

In-Stream Stochastic Division and Square Root via Correlation

Di Wu and Joshua San Miguel

di.wu@ece.wisc.edu, jsanmiguel@wisc.edu

Executive Summary

- What is Stochastic Computing (SC)?
 - An ultra-low power paradigm
- > What is our proposal?
 - Leveraging SC correlation for efficient nonlinear functions
 - Division and Square Root
- Design and evaluate our proposal.
 - Simultaneously higher efficiency, accuracy and speed

Outline

Stochastic Computing

- Nonlinear Functions
- Proposed Stochastic Division
- Proposed Stochastic Square Root
- Performance Evaluation
- Conclusion

Data Representation in Stochastic Computing

- Bernoulli Sequence (referred to as a Bit Stream)
 - The value is equal to the ratio of 1s.
 - The value is irrelevant to the position of 0s and 1s.
- Data Range
 - 0~1

Example of Stochastic Computing Circuit

Multiplication via a single AND gate

- Extremely Simple Logic
- Ultra-Low Power
- High Resistance to Noise

Correlation in Stochastic Computing

Zero correlation leads to Multiplication

Leveraging Correlation for SC Nonlinearity

Zero correlation is the cornerstone of primitive SC

Positive correlation for AND gate is

- Harmful to Multiplication
- Beneficial to Minimum

Our goal is

- To leverage SC correlation
- For Division and Square Root
- Achieving higher efficiency

Outline

✓ Stochastic Computing

Nonlinear Functions

- Proposed Stochastic Division
- Proposed Stochastic Square Root
- Performance Evaluation
- Conclusion

Nonlinear Functions

'Dynamic Routing via Capsules' by Hinton (*NeurIPS'17*)

9

Nonlinear Functions

Statistics from emerging neural networks

NN	Operation			
CNN	Conv, FC, Pooling, ReLu			
LSTM	*, Div, Exp, Tanh			
Graph CNN	*, Div, Exp, Log, Sqrt			
CapsNet	*, Div, Exp, Log, Sqrt			

Stochastic computing for better hardware efficiency

Existing Stochastic Divisions

Gaines Division (GDIV) (Gaines, 1969)

System reaches equilibrium:

 $P_{Dividend} = P_{Quotient} \cdot P_{Divisor}$

Existing Stochastic Divisions

Gaines Division (GDIV) (Gaines, 1969)

Requiring zero correlation

System reaches equilibrium:

 $P_{Dividend} = P_{Quotient} \cdot P_{Divisor}$

Correlated Division (CORDIV) (Chen, IVLSI 2016)

BS inputs to CORDIV Kernel are positively correlated $P_{Quotient} = P_{Dividend}/P_{Divisor}$

$$=\frac{\#(1)_{Dividend}}{\#(1)_{Divisor}}$$

Existing Stochastic Divisions

Gaines Division (GDIV) (Gaines, 1969)

System reaches equilibrium:

 $P_{Dividend} = P_{Quotient} \cdot P_{Divisor}$

Correlated Division (CORDIV) (Chen, IVLSI 2016)

BS inputs to CORDIV Kernel are positively correlated $P_{Quotient} = P_{Dividend}/P_{Divisor}$ $= \frac{\#(1)_{Dividend}}{}$

Existing Stochastic Square Root

Gaines Square Root (GSQRT) (Gaines, 1969)

System reaches equilibrium:

$$P_{In} = P_{Out} \cdot P_{Out}$$

- Problems in existing stochastic Division and Square Root
 - Highly relying on near zero correlation
 - Requiring extensive manipulation on Random Number Generators
 - Expensive Bit Stream Regeneration
 - Need comparators, and even additional registers

Outline

✓ Stochastic Computing ✓ Nonlinear Functions

Proposed Stochastic Division

- Proposed Stochastic Square Root
- Performance Evaluation
- Conclusion

Leveraging CORDIV Kernel, which requires positive correlation

BS inputs to CORDIV Kernel are positively correlated

$$P_{Quotient} = P_{Dividend} / P_{Divisor}$$
$$= \frac{\#(1)_{Dividend}}{\#(1)_{Divisor}}$$

Pair up 1s in the input BSs

Leveraging CORDIV Kernel, which requires positive correlation

Maximize correlation via Skewed Synchronizer

Based on the fact:

SC dividend cannot be larger than the divisor.

Leveraging CORDIV Kernel, which requires positive correlation

Maximize correlation via Skewed Synchronizer

Extend original DFF to 2-bit Shift Register (SR)

Leveraging CORDIV Kernel, which requires positive correlation

- Maximize correlation via Skewed Synchronizer
- Extend original DFF to 2-bit Shift Register (SR)

Given 256 bit length BS, number of registers is reduced from 17 to 4

Outline

- ✓ Stochastic Computing
- ✓ Nonlinear Functions
- ✓ Proposed Stochastic Division
- Proposed Stochastic Square Root
- Performance Evaluation
- Conclusion

Bit Inserting Square Root (BISQRT)

New Computing Scheme

- Output of Stochastic Square Root is always larger than input
- Inserting 1s into input properly leads to correct output

Functionality is guaranteed if

$$P_{Trace} = 1/(1 + P_{Out})$$

 $\sqrt{0.81} = 0.9 > 0.81$

Bit Inserting Square Root (BISQRT)

Two approaches to build the Trace Block > JKDIV (*Gaines, 1969*) based BISQRT

Connecting port J to 1 leads to

$$P_Q = P_J / (P_J + P_K)$$
$$= \frac{1}{1 + P_K}$$

Bit Inserting Square Root (BISQRT)

Two approaches to build the Trace Block > JKDIV (*Gaines, 1969*) based BISQRT

ISCBDIV based BISQRT

Simplified ISCBDIV

Output of CORDIV Kernel comes from the SR for isolation

$$P_{Quotient} = 0.5/(0.5 + 0.5 \cdot P_{Out})$$
$$= \frac{1}{1 + P_{Out}}$$

Outline

- ✓ Stochastic Computing
- ✓ Nonlinear Functions
- ✓ Proposed Stochastic Division
- ✓ Proposed Stochastic Square Root
- Performance Evaluation
- Conclusion

Evaluating Metrics

Feedback loops with Counters

- Counters incur fluctuation in output Bit Stream
- > Before reaching equilibrium, the BS error rate is inaccurate

Convergence time

• Cycle count to achieve expected stable-state accuracy

Experimental Configuration

Focus on influence of input correlation to the results

- Vary output value range
 - Different output value ranges imply different input correlation
- Fix input length
- > Apply high quality Sobol RNGs (*Li, DATE'17*)

ISCBDIV Performance

- Converges 46.3% faster.
- \blacktriangleright Reduces error by 43.3%.

Convergence time (Cycle)

Stable error rate (100%)

BISQRT Performance

- ➢ JKDIV-BISQRT reduces error by 16.8%.
- ➢ ISCBDIV-BISQRT reduces error by 29.0%.

Stable error rate (100%)

Hardware Implementation

Synopsys Design Compiler with TSMC 45nm @ 400MHz > Area, Power, Throughput Per Area (TPA)

 $frequency/(latency \times area)$

For DIV, energy reduction is 67.6%.

Design	Area	Power	Latency	TPA
	(μm^2)	(μW)	(cycles)	$(1/(\mu m^2 \cdot s))$
GDIV(Depth-5)	74.3	21.0	158	34,073
CORDIV	211.2	60.9	226	8,384
Proposed ISCBDIV	40.4	12.5	86	115,128
GSQRT(Depth-5)	78.3	23.5	192	26,607
Proposed JKDIV BISQRT	11.3	6.3	195	181,529
Proposed ISCBDIV BISQRT	25.4	12.6	187	84,214

For JKDIV SQRT, energy reduction is 72.8%.

Outline

- ✓ Stochastic Computing
- ✓ Nonlinear Functions
- ✓ Proposed Stochastic Division
- ✓ Proposed Stochastic Square Root
- ✓ Performance Evaluation
- **Conclusion**

Conclusion

Our proposal outperforms state-of-the-art nonlinear functions

- General benefits
 - SC is inherently more hardware efficient than conventional binary computing
- Enhancement to the state-of-the-art in SC
 - Lower area/power
 - Higher accuracy
 - Faster convergence speed

Thank you Q & A

Di Wu and Joshua San Miguel

di.wu@ece.wisc.edu, jsanmiguel@wisc.edu