
Normalized Stability: A Cross-Level Design Metric for Early

Termination in Stochastic Computing

Di Wu
University of Wisconsin-Madison

Madison, WI, USA

di.wu@ece.wisc.edu

Ruokai Yin
University of Wisconsin-Madison

Madison, WI, USA

ryin25@wisc.edu

Joshua San Miguel
University of Wisconsin-Madison

Madison, WI, USA

jsanmiguel@wisc.edu

ABSTRACT
Stochastic computing is a statistical computing scheme that repre-

sents data as serial bit streams to greatly reduce hardware complex-

ity. The key trade-off is that processing more bits in the streams

yields higher computation accuracy at the cost of more latency

and energy consumption. To maximize efficiency, it is desirable to

account for the error tolerance of applications and terminate sto-

chastic computations early when the result is acceptably accurate.

Currently, the stochastic computing community lacks a standard

means of measuring a circuit’s potential for early termination and

predicting at what cycle it would be safe to terminate. To fill this

gap, we propose normalized stability, a metric that measures how

fast a bit stream converges under a given accuracy budget. Our

unit-level experiments show that normalized stability accurately

reflects and contrasts the early-termination capabilities of varying

stochastic computing units. Furthermore, our application-level ex-

periments on low-density parity-check decoding, machine learning

and image processing show that normalized stability can reduce

the design space and predict the timing to terminate early.

1 INTRODUCTION
Stochastic computing (SC) [7] has regained research interest in

error-tolerant applications, like low-density parity-check decod-

ing [17, 19], machine learning [12, 16] and image processing [1, 11],

as it achieves high energy efficiency by trading off latency for com-

puting complexity. SC is a statistical computing paradigm over

serially streaming (unary) bits as SC data, with the latency identical

to the bit stream length. Given the ratio of ones in the bit stream

as 𝑝1, unipolar SC data is unsigned with the value 𝑉unipolar = 𝑝1
and data range [0, 1]. To generate an SC bit stream, the 𝑁 -bit bi-
nary source value is compared to an 𝑁 -bit random number from a

random number generator (RNG) at each cycle [7]. If the random

number is smaller, a bit one is generated at this cycle; otherwise, a

bit zero is generated. Statistically, the ratio of ones in the resultant

bit stream is proportional to the binary value. Examples to illustrate

unipolar SC data representation are shown in Fig. 1a. All three bit

streams have in total 16 bits, among which A, B, and C have 12, 8,

and 8 bit ones, respectively, leading to the unipolar values of 0.75,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431549

�������	
��	
�����

�

�

����������������	�������

����������������	������

����������������	������

����

����

����

(a) SC data representation

�

����������������

����������������
� ����������������	������

�

�

����������������

����������������
� ����������������	������

�����
�	
��	
�
���	
�

�����

(b) Early terminating SC multiplication with 0 error

Figure 1: An example of SC early termination

0.50, and 0.50. Bit ones in both A and B are almost uniformly dis-

tributed, abiding by the rule that each bit has an equal probability

to be one [7]. Data B has the same value as C due to the identical

one counts, though the distribution of ones varies.

The Benefit of Early Termination.With bit streams as SC data,

SC operations can be implemented with extremely simple logic. As

in Fig. 1b, a unipolar SC multiplication can be implemented with

an AND gate [7]. Given input bit streams 𝐴 and 𝐵, the same as in
Fig. 1a, the final value of the output bit stream 𝑋 is precisely 6/16

as expected. In this example, both input and output bit streams are

of length 16, and the computation takes 16 cycles to fully complete,

corresponding to 4-bit binary data. In general, to achieve the same

level of resolution as in 𝑁 -bit binary computing, SC requires 2𝑁

cycles, introducing exponential latency overhead. To mitigate this

overhead, early termination is a desired property for SC operations,

with which the computing latency and energy consumption are re-

duced while the accuracy is maintained at an acceptable level. Back

to the multiplication of 𝐴 and 𝐵 in Fig. 1b, by further examining

the cycle-level value of bit stream X, it is observed that the first 8

cycles of X give an identical value to the final result with 16 cycles,

and early terminating the calculation at cycle 8 has no influence to

the result yet reduces the latency and energy consumption by 50%.

On the other hand, also in Fig. 1b, bit stream Y is another accurate

product of unipolar data A and C, but now early termination cannot

be enabled without incurring accuracy loss. If some errors can be

tolerated, early termination might still be applicable to Y. Given

real-world SC applications that are error-tolerant (i.e., robust to

minor errors), early termination can greatly benefit both latency

and energy efficiency [3, 19, 20].

A Metric for Early Termination. Enabling early termination

for an arbitrary SC system is a challenging task. While some prior

work [18] has proposed hardware mechanisms for terminating

early, they are specific to multiplication and do not have broad

applicability to other SC circuits. Furthermore, prior metrics do

254

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Di Wu, Ruokai Yin, and Joshua San Miguel

not sufficiently capture the potential for early termination in SC

systems. The most relevant method, progressive precision [3], can

informwhether or not early terminationmay be applicable for an SC

operation but provides no indication of when to actually terminate.

We propose a new metric, normalized stability, that measures how

long a bit stream (for a static data value) has been stable within a

pre-defined accuracy budget, normalized to the maximum achievable

stable duration.Our metric offers two key benefits for designing

SC systems with early termination. First, we can derive the ratio

of output-to-input normalized stability of an SC unit, which is

an intrinsic property of the unit that we coin as flux normalized

stability. This informs how well the SC unit is able to propagate the

stability of the input bit streams to the resulting bit stream and thus

informs howwell the unit supports early termination, shrinking the

design space of SC systems. Second, we can profile the normalized

stability of an application with representative training data and use

our metric to predict when to early-terminate the application in

practice while maintaining acceptable accuracy.

The contributions in this work are as follows:

• We introduce the metrics normalized stability and flux nor-

malized stability and present their derivations.

• We simulate a wide range of SC units with varying imple-

mentation schemes to show how flux normalized stability

accurately measures the SC units’ intrinsic ability to support

early termination.

• We implement popular SC applications to demonstrate how

profiled normalized stability can accurately predict when it

is acceptable to early-terminate given an accuracy budget.

2 BACKGROUND
This section reviews two existing approaches for SC early termi-

nation, including one hardware and one metric approach. Then

different implementation schemes of SC units are presented, in-

cluding combinational logic, counter based and shift register based

sequential logic (the latter two are FSM based approaches).

2.1 Early Termination
Hardware Approach. A prior hardware mechanism for early

termination [18] is shown in Fig. 2. One multiplicand A, valued

12/16, is generated as a bit stream that needs to be as uniform as

possible, while the multiplicand B, valued 8/16, is constructed to

be deterministic with ones ahead of zeros, equivalent to the tempo-

ral multiplier in [20]. With such construction, if the computation

moves to the all-zero part, it can be skipped, by when six ones are

accumulated in the accumulator (ACC), producing a binary value

of 6/16. This method is able to eliminate ineffectual computations

when bits in multiplicand B are zero. However, there are three

fundamental limitations in this technique. First, for SC operations

that require information from all ones (e.g., the non-scaled addition

of two bit streams [20]) , this method is not applicable, as some

ones in A are never processed. Second, when multiple multipli-

cations are performed in parallel, the latency is bottlenecked by

the largest multiplicand B. Though early termination saves energy

for each individual multiplication, the total energy saving is not

comparable when early terminating all computations simultane-

ously. Last, this approach requires unary-binary inter-conversion

for every multiplication operation, both when formatting the input

�

�

����������������

����������������
��� ��	��

Figure 2: An example of hardware approach

�

���

���

��

��!

��"

� " # � �$ �� �" �#

�
��
�
�

�
���

�
���	�! �
���	�$

�
���	! �
���	% �
���	�& �
���	 �

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�

�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�
���	����	�

���������	�	���
������	�'�� (��
)	��	������	����	!'�� (�����)
���������
	����������	�� �	(�����)	��	������	����	����	(��
)

Figure 3: An example of metric approach. The green bit

stream is better for early termination than the red one.

bit streams and accumulating the output bit stream, which inhibits

the multiplication from being fully streaming, i.e., no bit stream

stalling. This imposes extra latency and hardware, nullifying the

latency and energy savings from early termination. Due to these

limitations, this hardware approach cannot be generalized to other

fully streaming SC systems.

Metric Approach. Progressive precision (PP) [3, 4] is a metric for

measuring accuracy at different lengths of a given bit stream. With

PP, accuracy is measured in terms of binary resolution; i.e., SC bit

streams are represented as binary values. For a length-𝑁 stochastic

bit stream, it is defined as 𝑘-PP if the bit error of its initial sub-

sequence of length 2𝑖 is at most 𝑘 for all 𝑖 . Here, the bit error is
defined as the absolute value of the difference between the expected

one count and the actual one count in the bit stream. Thus, PP

reflects the max bit error it can reach throughout all sub-sequences

with the length of a power of 2. The benefit of PP is twofold. First,

it can be informative for early termination. Lower PP implies more

accurate intermediate results, and the calculation can be stopped

early [3]. Second, the complexity of measuring PP scales linearly

with the application size, as it is designed for individual bit streams.

Fig. 3 shows two curves representing the cycle-level errors of 4-

PP and 0-PP bit streams of length 32 and unipolar value 0.5. Cycles

with a value of the power of 2, are labeled with vertical dash lines,

including 4, 8, 16, and 32. The maximum error count at those cycles

denotes the 𝑘 value for PP. As such, PP is able to measure accuracy.
Given the tolerable error as 10% in the gray horizontal line, at cycle

24 and 27, the 4-PP and 0-PP bit streams can be early terminated

safely, i.e., the error will never exceed the tolerance level later. From

Fig. 3, two defects of PP can be observed. First, it lacks the capability

to identify when to perform early termination. For the 4-PP bit

stream, the maximum error count comes from cycle 16. However,

early termination at cycle 24 is not indicated by 𝑘 = 4. Similarly,

cycle 27 to early terminate the 0-PP bit stream is not implied by 𝑘 =
0. As a result, PP fails to measure latency. Second, PP is incapable

to tell the quality of a bit stream in terms of early termination.

Though the 4-PP bit stream is technically worse than 0-PP, i.e.,

having a larger maximum error count, the 4-PP bit stream can be

terminated earlier than the 0-PP bit stream, given the error tolerance.

Furthermore, based on such incapability, we consider that PP can

not propagate in SC applications, though it is quantitative and

255

Normalized Stability: A Cross-Level Design Metric for Early Termination in Stochastic Computing ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

scales well at the unit and application level. In this work, normalized

stability is proposed to circumvent the above defects by providing

a numerical measurement of early termination, while maintaining

the scalability as in PP. For example, the 4-PP bit stream has 0.32

normalized stability, higher than 0.21 for the 0-PP one, and can be

classified as ”more stable”, i.e., the ability for earlier termination.

2.2 Stochastic Computing Units
Stochastic computing supports varieties of general mathematical

operations, including (though not limited to) addition [7, 8, 20],

multiplication [7, 18, 20], division [6, 7, 21], square root [7, 21],

exponentiation [10, 15], as well as some deep learning activation

functions, like hyper tangent [10, 15] and ReLU [9, 23]. Their SC

implementation schemes can be categorized into combinational

logic, counter based and shift register based sequential logic, as

listed in Table 1. Combinational logic exclusively measures the

influence of the current input to the output. Then counter based

sequential logic refers to using counting logic to record the entire

history of bit streams, while shift register based sequential logic

applies shift register to record the recent history of bit streams. Both

counter based and shift register based implementations are popular

for nonlinear SC operation design.

Table 1: Implementation schemes for SC operations

Op. Combinational Counter Shift Register

add [7] [20]

mul [7] [20]

div [7] [21]

sqrt [7] [21]

exp [15] [10]

tanh [15] [10]

ReLU [23] [9]

In this paper, we focus on the evaluation of SC units that take bit

streams as input and output in a fully streaming manner [21], not

those using binary input/output as in [8, 18], as fully streaming SC

units can take more advantage of early termination. Examples of

three implementation schemes are shown in Fig. 4. In Fig. 4a, combi-

national tanh is the Maclaurin series expansion of tanh(x) [15], and

the numbers represent the coefficients of different terms. This unit

involves only AND gates and NAND gates, as well as D-Flip-Flops

(DFFs), which act as the isolator for multiplication accuracy [5].

In Fig. 4b, counter based tanh is an FSM [10], where the output is

directly related to the entire history of the input bit, x. The complete

history is recorded in the N -bit saturating counter, denoted as CNT,

and initialized with 2𝑁−1. If input bit x is one, CNT will increase

by one; otherwise, it will decrease by one. The output of CNT is

compared with 2𝑁−1, and output a bit one if CNT value is larger. In

Fig. 4c, ReLU function, max(0, 𝑥), is presented based on N -bit shift
register (SR). The most recent N -bit input x is stored sequentially

in the shift register, and those bits are summed up in the parallel

counter (PC). The sum is compared with 𝑁
2 to select the output. If

the sum is less than 𝑁
2 , the bit stream is supposed to be negative

and a bit one is output for compensation; otherwise, output the

current input bit x. Similar to counter based logic, SR based designs

also leverage FSM. As those SC implementation schemes leverage

different input bits, they exhibit varying accuracy and speed of

convergence, i.e., the proposed normalized stability, and will all be

evaluated in this work.

� � �

�

�

������ �	�
� ��� ���

�

(a) Combinational tanh(x)

���
���

�	�

��
�
�

����

�

(b) Counter based tanh(x)

����
�

�
�� �

	

��

(c) Shift register based ReLU (x)

Figure 4: Examples of SC implementation schemes

3 NORMALIZED STABILITY
Normalized stability measures how long a bit stream (for a static

value) has been stable within a pre-defined accuracy budget, nor-

malized to the best case. Its derivation is separated into three phases,

including 1) retrieving the actual stability of the bit stream, 2) con-

structing a bit stream of the best stability and 3) normalizing the

actual stability to the best stability. In the following, we assume

unipolar SC data representation for clarity.

3.1 Actual Stability of Bit Stream
In the first phase, provided a target accuracy budget, what is the

actual stability of a bit stream? To answer this, a criterion is needed

to judge whether a bit stream stabilizes. In this work, we set the

criterion to be that the value of a bit stream always fluctuates

under the target absolute error. Then the ratio of the cycle count

that the bit stream has been in the stable state is defined as the

stability. Note that in this work we choose the absolute error instead

of the relative error due to two reasons. First, the absolute error

directly corresponds to the bit error in PP [3]. Second, using the

relative error is a stronger constraint on accuracy and decreases

the propagability of normalized stability in the application.

StabilityT =
𝑁 −max{𝑛 |Δ𝑃𝑛 > 𝑇 }

𝑁
(1)

The stability of a length-𝑁 bit stream with a user-defined error

threshold 𝑇 is formulated in Eq. (1), where 𝑃𝑛 represents the actual
value of the partial bit stream based on the first 𝑛 bits (𝑛 ≤ 𝑁),
with 𝑃𝐸 denoting the expected value, and Δ𝑃𝑛 is the absolute error
|𝑃𝑛−𝑃𝐸 | of the first𝑛 bits in the stream. Themax operation finds the
bit after which the absolute error of the bit stream is always bounded

to the target threshold T. The selection of T empirically depends on

user’s accuracy requirement for the error-tolerant application [13],

and T values of 5% and 10% for unipoalr SC are evaluated in this

paper. Stability varies within [0, 1), with a higher value indicating an
earlier convergence of the bit stream and better capability towards

early termination. Note that the accuracy used here is of cycle-level

granularity, differing from power of 2 in PP.

3.2 Best Stability of Bit Stream
At the second phase, we need to construct a length-𝑁 bit stream

with the best stability for normalization under the user-defined

error threshold 𝑇 . The final value of the best-stability bit stream
also fluctuates within the error threshold, implying a lower and

upper bound of the final value, denoted as 𝑃low = max(0, 𝑃𝐸 −𝑇)
and 𝑃high = min(𝑃𝐸 +𝑇, 1). For an arbitrary bit stream, traversing
all different orders of bits can locate the bit stream with the best

stability, however, at the cost of exponentially increasing complexity

256

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Di Wu, Ruokai Yin, and Joshua San Miguel

with the bit stream length 𝑁 . Thus, we introduce an approximate
approach to find the bit stream of best stability in this work, with

bit stream A in Fig. 5 as an example, where 𝑇 = 5% and 𝑁 = 32.

For values 𝑝 ∈ [𝑃low, 𝑃high] with the desired precision, it is possible
to find the shortest bit stream that precisely represents 𝑝 . The
shortest length for each precise 𝑝 value, 𝑙𝑝 , is formulated based on

the greatest common divisor in Eq. (2), where 𝐿 = 2 �log2 𝑁 � . For bit

stream A in Fig. 5, 𝑙𝑝 = 2 when 𝑝 = 0.5.

𝑙𝑝 =
𝐿

gcd(�𝑝 ∗ 𝐿�, 𝐿)
(2)

Though each value 𝑝 precisely corresponds to a length-l𝑝 bit stream,
improperly manipulating such bit streammight not lead to accurate

convergence at a maximized speed for the entire bit stream. Our

solution is to repeat this shortest bit stream multiple times until

the bit stream converges. Assuming 𝑅 repetitions, this implies that

starting from the (𝑅 · 𝑙𝑝 + 1)-th bit, the output accuracy is always
bounded in [𝑃low, 𝑃high], no matter this bit is zero or one. Now the

problem translates to determine the minimal repetition count, 𝑅,
formulated as in Eq. (3). The two inequalities denote appending an

extra bit (B), either zero or one, to 𝑅 repeated shortest bit streams.

𝑃low ≤
𝑝 · 𝑅 · 𝑙𝑝 + B

𝑅 · 𝑙𝑝 + 1
≤ 𝑃high (3)

The solution is given by Eq. (7), with the derivation shown in

Eq. (4, 5, 6). This solution satisfies that with 𝑅 repeated length-

𝑙𝑝 bit streams at the front, the bit stream is always stable with

more repeated length-𝑙𝑝 bit streams. And among all 𝑅 values for

all 𝑝 ∈ [𝑃low, 𝑃high], 𝑅 = argmin
𝑅

(𝑅 · 𝑙𝑝) is the final value we want.

For bit stream A in Fig. 5, 𝑅 = 5 when 𝑙𝑝 = 2, and 𝑅 · 𝑙𝑝 = 10 is the

shortest length for stabilization.

𝑅low · 𝑙𝑝 · (𝑝 − 𝑃low) ≥ 𝑃low − B

𝑅high · 𝑙𝑝 · (𝑃high − 𝑝) ≥ B − 𝑃high
(4)

𝑅low,B =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

𝑃low − B

𝑙𝑝 · (𝑝 − 𝑃low)
, if 𝑝 ≠ 𝑃low

0, if 𝑝 = 𝑃low and 𝑃low ≤ B

𝐿, otherwise

𝑅high,B =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

B − 𝑃high

𝑙𝑝 · (𝑃high − 𝑝)
, if 𝑃high ≠ 𝑝

0, if 𝑃high = 𝑝 and B ≤ 𝑃high
𝐿, otherwise

(5)

𝑅B=0 = max(𝑅low,B=0, 𝑅high,B=0)

𝑅B=1 = max(𝑅low,B=1, 𝑅high,B=1)
(6)

𝑅 = �min(𝑅B=0, 𝑅B=1)� (7)

3.3 Normalization of Stability
The last step is to normalize the actual stability of a bit stream with

the best stability, shown in Eq. (8). The best stability is calculated

based on 𝑅 repeated length-𝑙𝑝 bit streams. The max operation is to
cover the corner case when the bit stream value is close to either 1

or 0, indicating that only one bit is already stable.

Normalized StabilityT =
StabilityT

1 −max(𝑅 · 𝑙𝑝 , 1)/𝑁
(8)

�

��������������������������������

��������������������������������

�������		
�	����	�
	�����	��� ��	�������	

���������

� �������������������������������� �����

����

����

�� � �� � � �

Figure 5: An example of normalized stability with 𝑇 = 5%

An example of normalized stability for unipolar SC data with

𝑇 = 5%, 𝑁 = 32, 𝑙𝑝 = 2 and 𝑅 = 5 is depicted as in Fig. 5. All

three length-32 SC data, A, B, and C, have the same value of 0.5. For

each of them, bits in gray blocks are in the non-stable state, after

which bits in green blocks are in the stable state and the values are

constantly within the error budget. Therefore, the computation can

early terminate anytime during the stable state. SC data A has a

normalized stability of 1.00, as explained in Section 3.2. It is one of

the bit streams that have the most bits in stable states among all

possible bit streams. Then SC data B and C have the normalized

stability of 0.50 and around 0.25, which represent the ratio of bit

counts in the stable state of B and C and that of A. Therefore, given

a constant bit stream length, more bits in the green block means

shorter computing time, and the early termination can be activated

earlier linearly to the normalized stability. Normalized stability

explicitly involves time information in the definition, and acts as

an attribute for a single bit stream. To extend normalized stability

to SC units and applications with multiple bit streams, the average

of multiple individual normalized stability values can represent the

normalized stability of multiple bit streams.

4 UNIT-LEVEL NORMALIZED STABILITY
In this section, we analytically present, for various SC units in

Table 1 in Section 2.2, how the flux normalized stability varies,

given different input normalized stability and error thresholds.

4.1 Experimental Setup
We set the normalized stability of input bit streams approximately to

0.25, 0.50, and 0.75with𝑇 values of 5% and 10%, instead of examining

all possibilities. The input covers all 8-bit binary decimals in the

legal data range, and we ensure the final result will always converge

to the target budget by forcing near-zero input correlation [2]. All

simulations, leveraging hundreds of RNGs, are publicly available

on our open-source simulator, UnarySim [20, 22], which supports

stochastic computing and integrates stability metrics.

4.2 Flux Normalized Stability
Flux normalized stability is defined as the quotient of the output and

input normalized stability. This parameter can accurately reflect

the variance of normalized stability before and after an SC unit, i.e.,

the capability of the SC unit to maintain the normalized stability.

Therefore, adding an SC unit with high flux normalized stability,

the timing for early termination will not vary significantly.

The experimental result is presented in Table. 2, with each block

containing three flux normalized stability (saturated to 1.00) w.r.t.

different input normalized stability, 0.25, 0.5 and 0.75, respectively,

for a specific𝑇 . Values within the same block are consistently close
to each other, with the largest difference, 0.17, from counter based

expwith 10%𝑇 . On the other hand, values from different blocks vary.

Thus, we have four key takeaways. First, the SC operation type has

257

Normalized Stability: A Cross-Level Design Metric for Early Termination in Stochastic Computing ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

varying flux normalized stability, regardless of the implementation

scheme. Second, the implementation scheme influences the flux

normalized stability for a target SC operation. Third, a certain SC

unit has almost constant flux normalized stability, given varying

input normalized stability and a specific 𝑇 . Last, larger 𝑇 slightly

increases the flux normalized stability. Those takeaways conclude

that the attenuation of normalized stability is almost linear for a cer-

tain SC unit, given arbitrary input normalized stability and specific

𝑇 . Therefore, flux normalized stability reflects the quality of an SC
unit to maintain normalized stability, with a higher value benefiting

early termination more. Moreover, it is intuitive to consider that, at

the application level, given multiple candidate SC units, selecting

the one with the best flux normalized stability will lead to the best

normalized stability for the application output. In [16], the authors

extensively profile multiple SC units for neural networks, their final

choice of adders matches what flux normalized stability implies, i.e.,

counter-based adders are better than combinational adders. There-

fore, flux normalized stability reduces the design space complexity

from exponential as in [16] to linear.

Table 2: Unit-level flux normalized stability under varying

input normalized stability (0.25, 0.5, 0.75) and 𝑇 (5%, 10%).

Op. T Comb. Counter Shift Register

add
5% 0.94, 0.92, 0.92 0.98, 0.98, 0.99

10% 0.97, 0.97, 0.97 0.98, 0.99, 0.99

mul
5% 0.87, 0.89, 0.91 1.00, 1.00, 1.00

10% 0.86, 0.91, 0.94 1.00, 1.00, 1.00

div
5% 0.23, 0.23, 0.20 0.68, 0.71, 0.71

10% 0.58, 0.63, 0.59 0.61, 0.73, 0.77

sqrt
5% 0.68, 0.63, 0.57 0.39, 0.40, 0.39

10% 0.85, 0.82, 0.81 0.49, 0.49, 0.50

exp
5% 0.93, 0.89, 0.88 0.70, 0.82, 0.79

10% 0.98, 0.99, 0.98 0.79, 0.91, 0.96

tanh
5% 0.88, 0.90, 0.85 0.27, 0.27, 0.27

10% 0.93, 0.95, 0.95 0.29, 0.32, 0.32

ReLU
5% 1.00, 1.00, 1.00 0.61, 0.61, 0.61

10% 1.00, 1.00, 1.00 0.82, 0.88, 0.90

5 APPLICATION-LEVEL STUDY
Based on the unit-level discussion above, to better understand the

application-level early termination, we further test popular SC

applications, including low-density parity-check (LDPC) decod-

ing [17, 19], machine learning [12, 16] and image processing [1, 11].

For LDPC, we examine the propagation of normalized stability.

For machine learning, we additionally present how profiled nor-

malized stability predicts early termination. For image processing,

we extensively demonstrate that higher flux normalized stability

leads to earlier termination. For LDPC and machine learning, the

normalized stability equals the stability, as the output is one-hot

encoded with a best-stability of 1, while image processing outputs

pixel intensity, leading to unequal normalized stability and stability.

5.1 Low-Density Parity-Check Decoding
LDPC code is an error correction code to recover the correct mes-

sage after a message is generated but transmitted through a noisy

channel [17, 19]. The message is encoded with a size-(𝑘, 𝑛) sparse
matrix 𝐺 , and decoded with a size-(𝑚,𝑛) sparse matrix 𝐻 , where
𝐺 · 𝐻T = 0. With the length-𝑘 binary source message 𝑠 encoded

��

��

�� �� �� �� ��

����

� �
� � � � � �

� � � � � �

� � � � � �

	 �
� � � � � �

� � � � � �

� � � � � �

�
�����
��	������������� ���� ����

Figure 6: An example of SC LDPC decoding with 𝑇 = 5%

�

�

��

�

�

��
�� ��� ��� ��

���� ���� ���� ����

�������	
�	�
�����
�

Figure 7: An example of SC MLP with 𝑇 = 10%

as 𝑐 = 𝑠 ·𝐺 , the code 𝑐 is transmitted via a noisy channel and be-
comes 𝑐 = 𝑐 + 𝑒 , where 𝑒 is the noise. LDPC decoding can recover

source message 𝑠 from the noisy code 𝑐 , leveraging the fact that
𝑐 · 𝐻T = 𝑠 · 𝐺 · 𝐻T = 0. Viewing each column of 𝐻 as variable

nodes (VNs) and each row of 𝐻 as check nodes (CNs) in a Tanner

graph, the decoding process is an iterative process with a feedback

dataflow between 𝑛 VNs and𝑚 CNs in the Tanner graph.

An example of the 8-bit unipolar SC LDPC decoding process is

presented in Fig. 6. Gray inputs to the rectangle VNs denote the

noisy messages, while edges between the rectangle VNs and circle

CNs represent the messages generated by the decoding algorithm

in [17, 19]. Note that each VN/CN hardware will differ from other

VNs/CNs if node degrees differ. Those gray VNs correspond to the

redundant bits for parity check, while the red VNs are responsi-

ble to output the recovered source code. The correspondent valid

output normalized stability values are labeled. Due to different

hardware implementations of VNs and CNs, the output bits have

distinguished normalized stability with 𝑇 = 5%. And the value 0.57,

0.67, and 0.75 indicate that 112, 86, and 64 cycles out of 256 cycles

are required for each bit to be successfully decoded. Therefore, 112

cycles are required in total, and the latency reduction, 57%, directly

corresponds to the lowest output normalized stability.

5.2 Machine Learning
Machine learning [12, 16] is a popular SC application. In this work,

we examine a 3-layer feed-forward Multi-Layer Perceptron (MLP)

on MNIST dataset as in [20], and obtain around 94.7% final accuracy

for bipolar SC implementation [7]. Each layer of MLP, with size

labelled at the bottom, performs matrix multiplication followed by

nonlinear operations: ReLU [14] in the first two layers, and softmax

followed by a one-hot encoded max in the third layer.

Propagation of normalized stability for one test sample is

reported at the top of Fig. 7 using 𝑇 = 10%. Due to performing non-

scaled addition [20] in as short as 256 cycles, the normalized stability

degrades significantly at the first layer. However, at the output, the

normalized stability recovers, as MLP performs a classification task,

where the output relative magnitude matters. Starting from the 52nd

258

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Di Wu, Ruokai Yin, and Joshua San Miguel

cycle, the classification result for this test sample is correct, leading

to an almost 80% reduction in execution time.

Prediction of early termination is an important capability pro-

vided by our normalized stability metric. We profile 1000 random

training samples with our MLP model and obtain an average output

normalized stability of 0.72 (with 𝑇 = 5%). This implies that our

metric predicts that the output accuracy will already be within 5%

of the 256-cycle accuracy by cycle (1 − 0.72) ∗ 256 + 1 = 72. We

validate this by terminating the inference early on the full 10000

test dataset at cycle 72. We find that this yields 91.1% final accuracy,

which is indeed within 5% of the 256-cycle accuracy, 94.7%.

5.3 Image Processing
Image processing [1, 11] is another active area for SC; we explore

feed-forward SC edge detection as a case study in this work. SC edge

detection in [11] applies a convolutional kernel 𝐺 given in Eq. (9),

including two sub-kernels. The input image is first convolved with

each sub-kernel, and then the absolute values of two results are

added to retrieve the edge. The correspondent 10-bit unipolar SC

implementation is shown in Fig. 8, where every four adjacent pixels

produce one output pixel.

G =

����
1 0

0 −1

���� +
����
0 1

−1 0

���� (9)

Propagation of normalized stability for the same image with

different adder implementations and𝑇 values is shown at the top of

Fig. 8. We observe normalized stability in the application degrades

gradually, similar to the situation in MLP. Note that the output error

and normalized stability here are the mean of the absolute pixel

intensity errors and the mean of all individual normalized stability.

Influence of flux normalized stability aids in design space

exploration for application-level early termination. We demonstrate

this in our edge detection application, varying the choice of adder

and𝑇 . There are two approaches to increase the flux normalized sta-
bility according to Table 2. As our earlier experiments show, counter-

based adders yield higher flux normalized stability than combina-

tional ones (also implied by adder profiling in [16]); thus we expect

counter-based adders to be more performant in edge detection. We

validate this in Fig. 8, showing that early termination (with𝑇 = 5%)

using counter-based adders saves (0.84 − 0.81)/(1 − 0.81) = 15.8%
more cycles of latency than using combinational adders. Further-

more, applying a larger 𝑇 , if acceptable to the user, leads to higher
flux normalized stability. When early termination is enabled, in-

creasing 𝑇 from 5% to 10% for the counter-based implementation

can save (0.91 − 0.81) ∗ 1024 = 102 additional cycles; i.e., tolerating

up to 10% application error saves (0.91 − 0.81)/(1 − 0.81) = 52.6%
more cycles than tolerating only 5% error.

Prediction of early termination in edge detection can be per-

formed using our normalized stability metric, similar to our pre-

vious MLP example. We profile 20 random training images and

observe output normalized stability of 0.82 with 𝑇 = 5%. This pre-

dicts that a reduction of 0.82 ∗ 1024 = 840 cycles is possible with

early termination. We validate this on our edge detection appli-

cation with another 20 random test images and find that indeed

terminating 840 cycles early yields acceptable (i.e., within𝑇) output
error of 2.5%.

�������	
�	�
�����
�

���� ���� ���� ����

�

�������

�
�

�
�
�

�

�������

�
���

���

���

���

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

��

���

��

���

 ���
�

�����

��!"

�

Figure 8: An example of SC edge detection

6 CONCLUSION
Though early termination is an important aspect of efficient sto-

chastic computing, the SC community currently lacks sufficient

methodologies for enabling support for early termination in SC

systems. To address this, we introduce a new metric, normalized

stability, to characterize how long a bit stream has been sufficiently

accurate. Our experiments show that normalized stability is able

to accurately reflect the potential for early termination for both

arithmetic units and applications, demonstrating its efficacy for SC

design space exploration and predicting when it is acceptable to

terminate early.

REFERENCES
[1] A. Alaghi et al. 2013. Stochastic Circuits for Real-Time Image-Processing Appli-

cations. In DAC.
[2] A. Alaghi and J. P. Hayes. 2013. Exploiting Correlation in Stochastic Circuit

Design. In ICCD.
[3] A. Alaghi and J. P. Hayes. 2014. Fast and Accurate Computation using Stochastic

Circuits. In DATE.
[4] T. H. Chen et al. 2017. Achieving Progressive Precision in Stochastic Computing.

In GlobalSIP.
[5] T. H. Chen and J. P. Hayes. 2014. Analyzing and Controlling Accuracy in Sto-

chastic Circuits. In ICCD.
[6] T. H. Chen and J. P. Hayes. 2016. Design of Division Circuits for Stochastic

Computing. In ISVLSI.
[7] B. R. Gaines. 1969. Stochastic Computing Systems. In Advances in Information

Systems Science.
[8] K. Kim et al. 2015. Approximate De-Randomizer for Stochastic Circuits. In ISOCC.
[9] J. Li et al. 2017. Hardware-Driven Nonlinear Activation for Stochastic Computing

based Deep Convolutional Neural Networks. In IJCNN.
[10] P. Li et al. 2012. The Synthesis of Linear Finite State Machine-based Stochastic

Computational Elements. In ASPDAC.
[11] P. Li and D. J. Lilja. 2011. Using Stochastic Computing to Implement Digital

Image Processing Algorithms. In ICCD.
[12] Y. Liu and K. K. Parhi. 2016. Computing RBF Kernel for SVM Classification Using

Stochastic Logic. In SiPS.
[13] S. Mittal. 2016. A Survey of Techniques for Approximate Computing. Comput.

Surveys (2016).
[14] V. Nair and G. E. Hinton. 2010. Rectified Linear Units Improve Restricted Boltz-

mann Machines. In ICML.
[15] K. Parhi and Y. Liu. 2017. Computing Arithmetic Functions Using Stochastic

Logic by Series Expansion. TETC (2017).
[16] A. Ren et al. 2017. SC-DCNN: Highly-Scalable Deep Convolutional Neural

Network Using Stochastic Computing. In ASPLOS.
[17] S. S. Tehrani et al. 2008. Fully Parallel Stochastic LDPC Decoders. TSP (2008).
[18] H. Sim and J. Lee. 2017. A New Stochastic Computing Multiplier with Application

to Deep Convolutional Neural Networks. In DAC.
[19] D. Wu et al. 2016. Strategies for Reducing Decoding Cycles in Stochastic LDPC

Decoders. TCASII (2016).
[20] D. Wu et al. 2020. uGEMM: Unary Computing Architecture for GEMM Applica-

tions. In ISCA.
[21] D. Wu and J. San Miguel. 2019. In-Stream Stochastic Division and Square Root

via Correlation. In DAC.
[22] D. Wu and R. Yin. 2020. UnarySim. https://github.com/diwu1990/UnarySim
[23] J. Yu et al. 2017. Accurate and Efficient Stochastic Computing Hardware for

Convolutional Neural Networks. In ICCD.

259

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

