Normalized Stability: A Cross-Level Design Metric for Early Termination in Stochastic Computing

<u>Di Wu</u>, Ruokai Yin and Joshua San Miguel
University of Wisconsin-Madison

Outline

- ☐ Primer on stochastic computing
- ☐ Early termination for stochastic computing
- ☐ Metric-based characterization for early termination
- ☐ Evaluation of the metric on applications

Stochastic Computing – Comparison

- Binary Computing
 - Varying significance in parallel data bits.
 - Spatial domain with complex logic.

- Stochastic Computing (SC)
 - Equal significance in serial data bits.
 - Temporal domain with simple logic.

Binary multiplier (4-bit data in 1 cycle)

SC multiplier (4-bit data in 16 cycles)

SC Data

- Bit stream with rate coding
 - Valued by the frequency of 1s in the bit stream

SC Data

- > Bit stream with rate coding
 - Valued by the frequency of 1s in the bit stream

Generated by comparing source data with random numbers

1010010010100100 (6/16) 0101010110010110 (8/16)

- > Pros: computing unit
 - Low area and power
 - High parallelism

AND gate as multiplier

- > Pros
 - Low area and power
 - High parallelism

n-bit data require 2ⁿ cycles, i.e., exponentially increasing latency

- > Cons: data representation
 - Inaccuracy due to randomness
 - Long latency

- > Pros
 - Low area and power
 - High parallelism

Joint effect:

Undetermined energy efficiency

- > Cons
 - Inaccuracy due to randomness
 - Long latency

- > Pros
 - Low area and power
 - High parallelism
- > Cons
 - Inaccuracy due to randomness
 - Long latency

Joint effect: Undetermined energy efficiency

Improve energy efficiency with early termination

Early Termination

> Early termination (ET) enables high energy efficiency

X can be terminated without error using half cycles

Early Termination

> Early termination (ET) enables high energy efficiency

- X can be terminated without error using half cycles
- > New metric for characterizing early termination
 - Normalized stability

- Capability
 - Unit level:
 - Identify the competitiveness for ET
 - Application level:
 - Explore design space for ET
 - Predict the timing for ET

- Definition
 - How long a bit stream has been stable within a pre-defined accuracy budget, normalized to the maximum achievable stable duration

- Definition
 - How long a bit stream has been stable within a pre-defined accuracy budget, normalized to the maximum achievable stable duration

5% error, adapted from approximate computing

A 10101010101010101010101010101010 → 1.00

B 1010101010101010101010101010 → 0.50

C 101010101010101010101010101010 → ~0.25

Time in cycle

- Definition
 - How long a bit stream has been stable within a pre-defined accuracy budget, normalized to the maximum achievable stable duration

- Definition
 - How long a bit stream has been stable within a pre-defined accuracy budget, normalized to the maximum achievable stable duration

Definition

 How long a bit stream has been stable within a pre-defined accuracy budget, normalized to the maximum achievable stable duration

5% error, adapted from approximate computing

A higher value indicates earlier termination

Evaluate Normalized Stability

- Capability
 - Unit level:
 - Identify the competitiveness for ET
 - Application level:
 - Explore design space for ET
 - Predict the timing for ET

Evaluate Normalized Stability

- > Target application
 - SC edge detection

> Final results with varying units

Combinational adder

Counter-based adder

- Flux normalized stability (NS)
 - Output-to-input NS for SC units
 - A higher value indicates the ability for earlier termination

- > Flux normalized stability (NS)
 - Output-to-input NS for SC units
 - A higher value indicates the ability for earlier termination

Assume input NS = 0.5

Ор.	Error budget	Combinational	Counter-based
Add	5%	0.92	0.98
	10%	0.97	0.99

- > Flux normalized stability (NS)
 - Output-to-input NS for SC units
 - A higher value indicates the ability for earlier termination
 - Better SC units yield higher flux NS

Assume input NS = 0.5

Ор.	Error budget	Combinational	Counter-based
Add	5%	0.92	0.98
	10%	0.97	0.99

- > Flux normalized stability (NS)
 - Output-to-input NS for SC units
 - A higher value indicates the ability for earlier termination
 - Better SC units yield higher flux NS
 - Increase error tolerance

Assume input NS = 0.5

Op.	Error budget	Combinational	Counter-based
Add	5%	0.92	
	10%	0.97	0.99

Evaluate Normalized Stability

- Capability
 - Unit level:
 - Identify the competitiveness for ET
 - Application level:
 - Explore design space for ET
 - Predict the timing for ET

Evaluate Normalized Stability

- > Target application
 - SC edge detection

➤ Higher flux NS enables earlier termination

Adder	Error Budget	NS				ET Cycle
Comb.	⊏0/	0.97	0.95	0.20	0.18	838
CNT	5%	0.97	0.97	0.97	0.97	34

Use better SC units

> Better SC units

Combinational adder

Error tolerance 5%

Counter-based adder

> Better SC units

Combinational adder

Error tolerance 5%

Counter-based adder

> Higher flux NS enables earlier termination

Adder	Error Budget	NS				ET Cycle
Comb.	5%	0.97	0.95	0.20	0.18	838
	10%	0.99	0.98	0.32	0.31	702

Increase error tolerance.

➤ Higher error tolerance

➤ Higher error tolerance

Error tolerance 5%

➤ Higher error tolerance

Error tolerance 10%

➤ Higher error tolerance

Error tolerance 10%

Evaluate Normalized Stability

- Capability
 - Unit level:
 - Identify the competitiveness for ET
 - Application level:
 - Explore design space for ET
 - Predict the timing for ET

Evaluate Normalized Stability

- > Target application
 - SC edge detection

Phase	Output NS	Early termination cycle	Output Error
Train			5%

Phase	Output NS	Early termination cycle	Output Error
Train	0.82		5%

Phase	Output NS	Early termination cycle	Output Error
Train	0.82	184	5%

Phase	Output NS	Early termination cycle	Output Error
Train	0.82	184	5%
Test		184	

Phase	Output NS	Early termination cycle	Output Error
Train	0.82	184	5%
Test		184	2.5%

Phase	Output NS	Early termination cycle	Output Error	
Train	0.82	184	5%	
Test		184	2.5%	<5%

Implementation

- UnarySim
 - A PyTorch-based simulator for stochastic computing
 - Stream
 - Kernel
 - Metric
- Stability metrics
 - Embedded in UnarySim as a metric component

Thank you! Q & A

<u>Di Wu</u>, Ruokai Yin and Joshua San Miguel University of Wisconsin-Madison

