
Zero Correlation Error: A Metric for Finite-Length Bitstream

Independence in Stochastic Computing

Hsuan Hsiao
University of Toronto

julie.hsiao@mail.utoronto.ca

Joshua San Miguel
University of

Wisconsin-Madison

jsanmiguel@wisc.edu

Yuko Hara-Azumi
Tokyo Institute of

Technology

hara@cad.ict.e.titech.ac.jp

Jason Anderson
University of Toronto

janders@ece.utoronto.ca

ABSTRACT

Stochastic computing (SC), with its probabilistic data representation

format, has sparked renewed interest due to its ability to use very

simple circuits to implement complex operations. Though unlike

traditional binary computing, SC needs to carefully handle correla-

tions that exist across data values to avoid the risk of unacceptably

inaccurate results. With many SC circuits designed to operate under

the assumption that input values are independent, it is important to

provide the ability to accurately measure and characterize indepen-

dence of SC bitstreams. We propose zero correlation error (ZCE), a

metric that quantifies how independent two finite-length bitstreams

are, and show that it addresses fundamental limitations in metrics

currently used by the SC community. Through evaluation at both

the functional unit level and application level, we demonstrate how

ZCE can be an effective tool for analyzing SC bitstreams, simulating

circuits and design space exploration.

1 INTRODUCTION

Stochastic computing (SC) is a reemerging computing paradigm—

with applications in image processing [2, 7, 12], error correction

codes [6, 17] and neural networks [3, 15, 16]—that performs com-

putation on bit-serial unary bitstreams as opposed to bit-parallel

binary-encoded registers [8, 18]. Values in SC are represented by

the probability that a bit is set in a bitstream. Because of its value

encoding format and its serial nature, SC is capable of performing

computation with extremely small functional units (e.g. multiplica-

tion is reduced to a single AND gate).

Unlike traditional binary computing, SC needs to handle data

values with care to avoid the risk of unacceptably inaccurate compu-

tation results. Because SC is probabilistic, data values (bitstreams)

need to be statistically independent for key operations (e.g. mul-

tiply [9] and scaled add [9]). SC circuit designers need a way to

accurately measure and characterize independence to ensure a cor-

rectly functioning system. Applying the definition of independence

from classical probability theory to SC bitstreams is non-trivial

since in practical implementations of SC, bitstreams are not truly

random and are finite in length. Currently, the metric used for this

purpose is stochastic cross correlation (SCC) [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00
https://doi.org/10.1145/3394885.3431552

Example: �� =
�

��
��=

��

��
�	= ���� =

�

��

��

��
=

�

��

PX = 1110 0000 0000 0000

PY = 1100 1111 1111 1111

Poor alignment (high error):

PZ = 1100 0000 0000 0000 =

��

… but best alignment according to SCC (SCC = -0.3846)
error = �

�

���

PX = 1110 0000 0000 0000

PY = 1110 0111 1111 1111

Best alignment (lowest error):

PZ = 1110 0000 0000 0000 =
�

��

… but poor alignment according to SCC (SCC = 1) error =
�

���

Figure 1: Example of when an alignment with the lowest

|𝑆𝐶𝐶 | does not correspond to the one with highest accuracy.

SCC reasons about the similarity between two finite-length bit-

streams by looking at the alignment of 0s and 1s in the two bit-

streams. For a functional unit that prefers independent inputs for

higher accuracy, the highest accuracy is attained when the input

bitstreams are uncorrelated, i.e. 𝑆𝐶𝐶 = 0. However, depending on

the values represented by the input bitstreams, sometimes 𝑆𝐶𝐶 = 0

is not achievable. To find the alignment that results in the high-

est accuracy, one might assume that finding the alignment where

|𝑆𝐶𝐶 | is closest to 0 would result in the highest accuracy. This is
however not always the case, as illustrated in Figure 1. When mul-

tiplying input values 𝑃𝑋 = 3
16 and 𝑃𝑌 = 14

16 , there are three possible

alignment variants: one matched 1s (𝑆𝐶𝐶 = −1), two matched 1s
(𝑆𝐶𝐶 = −0.3846), and three matched 1s (𝑆𝐶𝐶 = +1). If we use the
best alignment according to the SCC metric (𝑆𝐶𝐶 = −0.3846), the
final result has an error of − 10

256 , compared to the actual best align-

ment, which results in an error of 6
256 . From this counterexample,

we see that while SCC can be applied to reason about correlation

between two bitstreams, it has fundamental limitations in evalu-

ating the independence of bitstreams when certain conditions are

not met (i.e. when SCC cannot reach 0).

Other than SCC, the majority of prior works that analyze error

either focus on aspects unrelated to correlation or account for mul-

tiple sources of error [5, 14]; thus they are not suited for evaluating

independence. To better understand and isolate the errors stem-

ming from a lack of input independence, it is desirable to have a

metric that quantifies this. We make the following contributions:

• We demonstrate the disparity between bitstream indepen-

dence and SCC. We perform a detailed analysis of SCC and

show that SCC is not always able to identify when two bit-

streams are independent (on average 20% of the time for

64-bit bitstreams).

• We propose a new metric called zero correlation error (ZCE),

which allows for measuring the independence of two finite-

length bitstreams, and present a step by step walk through

of its derivation based on probability theory.

260

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Hsuan Hsiao, Joshua San Miguel, Yuko Hara-Azumi, and Jason Anderson

0%

20%

40%

60%

80%

100%

64 128 256 512 1024pe
rc

en
ta

ge
 o

f i
np

ut
 p

ai
rs

bitstream length

incorrect partially correct correct

Figure 2: How often SCC correctly identifies the most in-

dependent input pairs. Correct refers to when SCC iden-

tifies the same alignment as the maximally independent

alignment; partially correctly refers to when SCC identi-

fies the same alignment as one of the maximally indepen-

dent alignments (i.e. when two alignments have the same

|𝑃𝑋∧𝑌 −𝑃𝑋𝑃𝑌 |); and incorrect refers to when SCC identifies a
different alignment from the maximally independent one.

• We evaluate the practical application of ZCE, in terms of

design space exploration, profiling, and determining optimal

bitstreams.

2 BACKGROUND AND MOTIVATION

This section provides a primer on SC, independence and cross-

correlation, and motivates the need for a new metric.

2.1 Stochastic Computing

Stochastic computing is a computing paradigm where data is en-

coded as unary bitstreams and their values are represented as the

probability of a bit being set (e.g. a bitstream representing 0.5 will

have half of its bits set and half unset in the unipolar represen-

tation) [9, 18]. For example, in Figure 1, the value 𝑃𝑌 = 14
16 is

represented by a bitstream of length 16, where 14 of the bits are

set to 1, regardless of where in the bitstreams the 1s are located.

Computation in SC leverages the transformation of probability

values through various basic circuit gates. One major advantage

of stochastic computing is that several arithmetic computations

can be performed with very simple and small numbers of gates

(e.g. multiplication using a single AND gate).

2.2 Independence of Bitstreams

In probability theory, if two events have their joint probability

equal to the product of the two probabilities (i.e. 𝑃𝑋∩𝑌 = 𝑃𝑋𝑃𝑌),
the two events are said to be independent. However, with finite-

length bitstreams, 𝑃𝑋∩𝑌 is not always attainable. Thus instead, SC

uses the AND-gate result 𝑃𝑋∧𝑌 , and we refer to this as the finite-
length joint probability. Two finite-length bitstreams are said to

be as independent as they can be if 𝑃𝑋∧𝑌 = 𝑃𝑋𝑃𝑌 . Because the
result of the AND gate depends on the alignment of 0s and 1s,

measuring independence of two bitstreams requires analyzing their

alignments, also referred to as their cross-correlation.

2.3 SCC and Limitations

Stochastic cross correlation (SCC) is the de facto metric to assess the

cross-correlation between two SC bitstreams [1]. The more aligned

0s and 1s there are between two bitstreams, the more positively

correlated the two bitstreams are. Similarly, the more misaligned

0s and 1s there are between two bitstreams, the more negatively

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Py

Px

partially correct incorrect

Figure 3: Distribution of incorrect and partially correct

alignments for independence identified by SCC, for a bit-

stream length of 64. The horizontal and vertical axes show

the values represented by two SC bitstreams 𝑃𝑋 and 𝑃𝑌 , re-
spectively. Black dots indicate combinations of 𝑃𝑋 , 𝑃𝑌 values
where SCC incorrectly identifies the maximally indepen-

dent alignment. Grey dots indicate combinations of 𝑃𝑋 , 𝑃𝑌
values where SCC only identifies one of the maximally in-

dependent alignments.

correlated the two bitstreams are. While SCC and independence are

closely related, our insight in this work is recognizing that they are

not equivalent when dealing with finite-length bitstreams.

The SCC of two input bitstreams 𝑋 and 𝑌 is defined as:

𝑆𝐶𝐶 (𝑋,𝑌) =

{
𝑃𝑋∧𝑌−𝑃𝑋 𝑃𝑌

min(𝑃𝑋 ,𝑃𝑌)−𝑃𝑋 𝑃𝑌
if 𝑃𝑋∧𝑌 > 𝑃𝑋𝑃𝑌

𝑃𝑋∧𝑌−𝑃𝑋 𝑃𝑌
𝑃𝑋 𝑃𝑌−max(𝑃𝑋 +𝑃𝑌−1,0)

otherwise
(1)

or alternatively:

𝑆𝐶𝐶 (𝑋,𝑌) =

{
𝑎𝑑−𝑏𝑐

𝐿 ·min(𝑎+𝑏,𝑎+𝑐)−(𝑎+𝑏) (𝑎+𝑐) if 𝑎𝑑 > 𝑏𝑐
𝑎𝑑−𝑏𝑐

(𝑎+𝑏) (𝑎+𝑐)−𝐿 ·max(𝑎−𝑑,0) otherwise
(2)

where 𝑎, 𝑏, 𝑐, 𝑑 are the number of bits where the alignment of (𝑋,𝑌)
are (1, 1), (1, 0), (0, 1), (0, 0), respectively, and 𝐿 is the length of

the bitstream. For example, the inputs at the top of Figure 1 yield

𝑎 = 2, 𝑏 = 1, 𝑐 = 12, 𝑑 = 1. The SCC metric is designed to be

value-independent and always outputs +1 if 𝑋 and 𝑌 are maximally

positively correlated and −1 if they are maximally negatively cor-

related. SCC outputs 0 if the degree of alignment (𝑎𝑏) equals the
degree of misalignment (𝑏𝑐). All other points in between −1 and 1
are linearly interpolated.

In analyzing SC circuits, it can be tempting to use SCC as a proxy

to assess the accuracy of computations if the correlation affinity of

the functional unit is known. For example, if a functional unit is

designed to yield the highest accuracy when the input bitstreams

are most positively correlated (e.g. absolute subtract [2]), it makes

sense to evaluate the SCC of the input bitstreams and make the

conclusion that if a given pair of input bitstreams has SCC closer

to 1, then the result of the computation is more accurate. This line

of reasoning works when the functional unit is designed with affinity

towards positive or negative correlation but breaks down when it is

designed to have affinity for independent inputs.

261

Zero Correlation Error ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

qu
an

tiz
at

io
n

er
ro

r

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

SC
C

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

ZC
E

0

alignments alignments alignments
A

B

C

D

A

B

C

D

A

B

C

D

(a) (b) (c)

Figure 4: Plots of (a) SCC, (b) true error and (c) ZCE for all

possible alignments of 𝑃𝑋 × 𝑃𝑌 = 21
32 ×

22
32 . Point B is the most

independent alignment, whereas SCC incorrectly identifies

point C as the most independent alignment.

In this work, we recognize that having close-to-zero SCC be-

tween two bitstreams does not necessarily imply that they are maxi-

mally independent, even though they can sometimes yield the same

alignment. If we look at all pairs of values 𝑋 and 𝑌 representable

in a finite bitstream length and compare the most uncorrelated

alignment (suggested by SCC) with the most independent align-

ment (suggested by minimizing |𝑃𝑋∧𝑌 −𝑃𝑋𝑃𝑌 |), we can get a sense
of how often they correspond to each other. Figure 2 shows this

across different bitstream lengths. We see that SCC is not able to

identify the maximally independent alignment 18% of the time, on

average. To further try to understand when this happens, Figure 3

shows the distribution of input value pairs where SCC incorrectly

identifies the maximally independent alignment, or is only able to

partially identify some maximally independent alignments. We can

see that this phenomenon is not uniformly distributed across all

input values, and there are particular input value pairs that pose

difficulties (e.g. combinations of very small and very large values).

Since the fraction of cases where SCC is not able to identify the

maximally independent alignment is non-negligible, this further

motivates the need for a better metric to quantify independence.

3 ZERO CORRELATION ERROR

We propose zero correlation error (ZCE) with two goals in mind:

(1) The metric should preserve the property where the more

independent an alignment is, the closer to 0 it should yield;

(2) Themetric should output 0 for all alignments that correspond

to the most independent alignment possible given a finite

bitstream length, allowing for quick identification of whether

independence is achieved.

We want these properties so that it not only becomes possible to

use ZCE to evaluate independence of bitstreams, but that it can also

be used as a proxy to evaluate accuracy, and allows for efficient

analysis and design exploration of SC circuits.

3.1 SCC vs. ZCE

This section illustrates why SCC cannot always identify the most

independent alignment and describes what we want to accomplish

in deriving ZCE. We plot the value of SCC, ZCE, and quantization

error for all possible alignments of 𝑃𝑋 × 𝑃𝑌 = 21
32 ×

22
32 in Figure 4.

Comparing the SCC plot in Figure 4a and the quantization error plot

in Figure 4b, we see that the SCC metric takes the two end points

(A and D) and normalizes these points to to −1 and 1, respectively.

While this was done in order to allow for identification of maxi-

mally positive and negative correlation, it results in a difference in

slope when approaching 0 from the positive and negative side. This

difference in slope is the reason why the |𝑆𝐶𝐶 | closest to 0 is not
always the most independent alignment. In this example, if we look

at the quantization error, the point with the lowest absolute error

is B, yet the point with the lowest absolute SCC is C (since there are
more points on the positive side than the negative side). Looking at

this plot, we can observe that SCC is perfectly capable of evaluating

how positively or negatively correlated two bitstreams are, and

is able to indicate whether a certain alignment has reached the

most positive correlation possible (𝑆𝐶𝐶 = +1) or the most negative
correlation possible (𝑆𝐶𝐶 = −1).
Visually, the intent of ZCE is twofold. First, we want to retain

the slope of the line shown in the quantization error (to satisfy

goal (1) above). Second, we want to “thicken” the crossing at 0 such

that if the minimum positive error and the minimum negative error

have the same magnitude, they both appear as 𝑍𝐶𝐸 = 0 (to satisfy

goal (2)). Doing this gives us Figure 4c, which now enables us to

evaluate how independent two bitstreams are and validate that a

certain alignment has reached the most independence possible. In

this example, we see that the points with the lowest absolute error

and the lowest ZCE are both B. ZCE further provides a direction by
maintaining the direction of error — ZCE is a positive value if two

bitstreams are positively correlated, and vice versa.

Takeaway: SCC should still serve as the metric for determining

maximally positive and maximally negative correlation. Mirroring

this, our goal with ZCE is to instead determine how maximally

independent two bitstreams are.

3.2 Derivation of ZCE

With the high-level goal of ZCE in mind, we now walk through the

derivation of the ZCE equation.

Quantization Error: As mentioned in Section 2.2, two finite-

length SC bitstreams 𝑃𝑋 and 𝑃𝑌 are as independent as they can

be when 𝑃𝑋∧𝑌 − 𝑃𝑋𝑃𝑌 = 0. Assume 𝐿 is the length of the bit-

stream. While 𝑃𝑋𝑃𝑌 requires 𝐿2 precision, 𝑃𝑋∧𝑌 only has 𝐿 pre-

cision, which results in a certain amount of quantization error

introduced. Given 𝑃𝑋 and 𝑃𝑌 as inputs, the amount of quantization

error for any arbitrary pair of bitstreams can be expressed as

Δ0 = 1/𝐿 ·
⌊𝑃𝑋𝑃𝑌
1/𝐿

+
1

2

⌋
− 𝑃𝑋𝑃𝑌 (3)

The first term is the product of inputs quantized to 1
𝐿 , and the

second term is the desired product. Δ0 therefore represents the
amount of error when we have the most independent alignment

(i.e. distance from 0 of point B in Figure 4(b)). Looking at the bit
values in the two input bitstreams, if 𝑎, 𝑏, 𝑐 , 𝑑 are the number of bits
where (𝑋,𝑌) = (1, 1), (1, 0), (0, 1), (0, 0) respectively, Equation 3
can also be equivalently expressed as

Δ0 =

⌊
(𝑎+𝑏) (𝑎+𝑐)

𝐿 + 1
2

⌋
𝐿

−
(𝑎 + 𝑏) (𝑎 + 𝑐)

𝐿2
(4)

Note that in this equation, since 𝑎 + 𝑏 equals the number of 1s in 𝑋
and 𝑎 + 𝑐 equals the number of 1s in 𝑌 , the value of Δ0 is the same
regardless of the actual alignment between 𝑋 and 𝑌 .

262

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Hsuan Hsiao, Joshua San Miguel, Yuko Hara-Azumi, and Jason Anderson

1.14

1.16

1.18

1.20

1.22

1.24

64 128 256 512 1024

av
er

ag
e

er
ro

r r
at

io

bitstream length
Figure 5: Average error of AND-gate multiplication when

following the alignment recommended by SCC, normalized

to quantization error.

Actual Error: For the two bitstreams ZCE is evaluating, they may

have a different alignment from Δ0 (i.e. can be any point on Fig-
ure 4(b)). We can compute the error (distance to the x-axis) as:

Δ = 𝑃𝑋∧𝑌 − 𝑃𝑋𝑃𝑌 (5)

where 𝑃𝑋∧𝑌 is the AND-gate result of the two input bitstreams.

Again, Equation 5 can equivalently be expressed as

Δ =
𝑎

𝐿
−
(𝑎 + 𝑏) (𝑎 + 𝑐)

𝐿2
(6)

Zero Correlation Error: With Δ and Δ0 defined, we can now

use them to evaluate how close you are to the most independent

alignment (displacement from the lowest error – i.e. removing the

error due to limited precision) with the following metric:

ZCE =
Δ

|Δ|
(|Δ| − |Δ0 |) = Δ

(
1 −

���Δ0
Δ

���) (7)

4 EVALUATION

In this section, we demonstrate how ZCE can be valuable in the de-

sign of SC systems via use cases in determining optimal alignments,

profiling bitstreams and design space exploration.

4.1 Use Case: Finding Optimal Alignment

How do we align the input bitstreams such that our circuit yields the

lowest error? This is an important question for SC circuit design-

ers since the cross-correlation of input bitstreams can affect the

accuracy of the computation. For functional units that have affinity

towards independent input bitstreams (e.g. AND-gate multiplica-

tion, MUX-based scaled addition), ZCE is a good metric to help

answer this question. In Section 2.3, we motivated the need for a

better metric to quantify independence of bitstreams than SCC, and

here we compare how well ZCE and SCC perform in this task.

Multiplication: In the first experiment, we evaluate the input

bitstreams of an AND-gate multiply. For all possible values that the

two input bitstreams can take, we use SCC and ZCE to recommend

an optimal alignment. With each of the recommended alignments,

we evaluate the accuracy of the multiplication output and compare

it to the desired product of the two input values when quantized

to a finite bitstream length. Because of the way ZCE is designed,

the AND-gate products of ZCE’s recommended alignments are all

equivalent to the quantization results and are the best that can be

achieved. In comparison, Figure 5 shows the average error across all

possible input value pairs, normalized to quantization error, when

the alignment recommended by SCC is used. We can see that the

error decreases as the bitstream length increases, which is due to

the diminishing contribution of a bit in the overall value as the

bitstream length increases.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

64 128 256 512 1024

av
er

ag
e

er
ro

r r
at

io

bitstream length

SCC ZCE

Figure 6: Average error of scale-by-4 addition (𝑃𝑍 = 𝑃𝑋 +𝑃𝑌
4)

when following the alignment recommended by SCC and

ZCE, normalized to quantization error.

0%

2%

4%

6%

8%

10%

64 128 256 512 1024

R
M

SE

bitstream length

SCC ZCE

Figure 7: Average RMSE of a 3 × 3 Gaussian blur filter when

following the alignment recommended by SCC and ZCE.

Scaled Addition:We perform the same experiment with a multi-

plexer that implements scaled addition in SC. For a scaled addition,

the highest accuracy can be achieved when each of the input bit-

streams are independent from the bitstream of the mux select signal.

To evaluate howwell SCC and ZCE can serve as a proxy for accuracy

for a scaled addition, we pick an example computation: 𝑃𝑍 = 𝑃𝑋 +𝑃𝑌
4 .

In the experiment, the select bitstream is kept the same (14), and

SCC and ZCE are used to find the best alignment for the input

bitstreams with respect to the select bitstream. Figure 6 shows the

ratio of average error across all possible pairs if the recommended

alignment of SCC and ZCE are used, normalized to quantization

error. Here, we see that the error across different bitstream lengths

stays mostly constant, and ZCE produces lower error than SCC.

One thing to note is that unlike the AND-gate multiply experiment,

ZCE does not necessarily achieve the lowest possible error (i.e. only

quantization error). To understand this, we can look at the logic

expression of a 2-to-1 mux, which is 𝑍 = ¬𝑆𝑋 + 𝑆𝑌 . As shown
previously, ZCE is able to find the most independent alignment for

each of the two components (¬𝑆𝑋 and 𝑆𝑌) since they are both AND
gates. However, because the error of a mux is now from more than

one component, it is possible that aggregating a mix of positive and

negative errors can cancel out and result in lower error. In ZCE’s

case, because it outputs 0 for the most independent alignment,

the cancelling of positive and negative does not occur, leading to

non-zero amounts of error compared to quantization error.

2D Convolution:We perform application-level analysis on a 2D

convolution benchmark. In this experiment, we take a 256 × 256

grayscale image and convolve it with a 3 × 3 weight filter that

represents a Gaussian blur. For each multiplication in the bench-

mark, SCC and ZCE are used to determine the best alignment for

each pixel and weight value. The output of the multiplication is

then accumulated in a parallel adder to sum up the result of nine

products for each output pixel. The root-mean-square error (RMSE)

263

Zero Correlation Error ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

1

1.2

1.4

1.6

1.8

2

64 128 256 512 1024

sp
ee

du
p

bitstream length

ops wall clock time

Figure 8: Speedup of using ZCE to determine whether bit-

streams are optimally aligned compared to using SCC.

with respect to the floating-point version is computed for six differ-

ent images, and the geomean across all six images for each of the

different bitstream lengths are shown in Figure 7. We can see that

ZCE consistently produces alignment recommendations that lead

to higher overall accuracy than SCC, across all bitstream lengths.

Again, the gap between the errors that result from a difference in

alignment recommendation narrows as bitstream length increases,

due to each bit having a lower contribution to the overall value as

bitstream length increases.

Takeaway: ZCE consistently identifies alignments that yield lower

error than SCC, both at the functional unit level and at the applica-

tion level. Thus, it can serve as a valuable tool for measuring the

independence of bitstreams in arbitrary SC systems.

4.2 Use Case: Profiling Bitstreams

How quickly can we determine if our bitstreams are aligned as inde-

pendently as they can be? This is an important question for designers

who are simulating and debugging their SC circuits. We evaluate

the amount of time it takes to answer whether bitstreams are opti-

mally aligned using SCC and ZCE. Using ZCE to figure out whether

a pair of bitstreams is optimally aligned simply involves checking

whether ZCE equals zero. On the other hand, since there are input

value pairs where it is not possible for SCC to output 0, using SCC

to figure out whether two bitstreams are optimally aligned often

involves evaluating the SCC of a second alignment in order to see

which one yields |𝑆𝐶𝐶 | closer to 0. Recall though that even when
|𝑆𝐶𝐶 | is closest to 0, it may not be the most independent alignment;
for simplicity, since this experiment evaluates simulation time, we

assume that identifying |𝑆𝐶𝐶 | closest to 0 is sufficient.
In this experiment, we generate random bitstream alignments

for all possible input value pairs and measure both the number of

operations (i.e. number of times each metric is invoked) and the

amount of time it takes to compute. We average the results over

six different runs and show the speedup of using ZCE compared to

using SCC in Figure 8. In terms of the number of operations, we

observe that SCC needs to be computed twice most of the time,

and the speedup of ZCE increases as the bitstream length increases.

This is because the number of input value pairs where 𝑆𝐶𝐶 = 0

is impossible (i.e. no alignment exists with 𝑆𝐶𝐶 = 0) increases

as bitstream length increases, from 91% for a length-64 bitstream

to 99% for a length-1024 bitstream. If we look at the wall clock

speedup, we see that using ZCE is faster by roughly 1.45×, even
though ZCE’s computation is more involved than SCC’s.

Takeaway: ZCE can determine whether two bitstreams are opti-

mally aligned faster than SCC since the optimal alignment is defined

rank1

rank2

rank3

rank4

rank5

rank6

rank7

rank8

rank9

rank10

rank11

rank12

rank13

rank14

rank15

rank16

rank17

rank18

rank19

rank20

rank21

true error ZCE SCC
config 13

config 5

config 1

config 12

config 20

config 11

config 6

config 7

config 10

config 19

config 16

config 21

config 2

config 4

config 15

config 9

config 17

config 8

config 14

config 3

config 18

(a) 6-bit LFSRs.

rank1

rank2

rank3

rank4

rank5

rank6

rank7

rank8

rank9

rank10

rank11

rank12

rank13

rank14

rank15

rank16

rank17

rank18

rank19

rank20

rank21

true error ZCE SCC
config 21

config 16

config 6

config 13

config 19

config 10

config 7

config 1

config 20

config 2

config 5

config 12

config 14

config 8

config 11

config 15

config 9

config 17

config 3

config 4

config 18

(b) 8-bit LFSRs.

Figure 9: Ranking of 6-bit and 8-bit LFSR configurations

based on true error (via AND-gate multiplication), ZCE and

SCC, averaged over all possible input value pairs. ZCE’s and

SCC’s rankings yield a Kendall’s 𝜏 coefficient of 1 and 0.82
respectively for 6-bit LFSRs, and 1 and 0.83 for 8-bit LFSRs.

to always yield 𝑍𝐶𝐸 = 0. This simplifies and speeds up the profiling

and debugging of SC circuits during design iterations.

4.3 Use Case: Design Space Exploration

How can we compare different number generator designs and select

the best one(s) for our circuit?When designing an SC application, the

choice of random number generator can affect the cross-correlation

between different values and thus the accuracy of the computation.

In this exploration, we evaluate the independence of bitstreams

generated by different pairs of linear feedback shift registers (LF-

SRs). For a 6-bit LFSR, there are six possible designs with different

feedback taps, leading to a total of
((
6
2

))
= 21 different LFSR pairs,

which we refer to as a configuration. For each configuration, we

evaluate all possible value pairs and compute the average SCC and

ZCE, as well as the average computation error.

Multiplication: The first experiment evaluates the ability of SCC

and ZCE to rank LFSR configurations when bitstreams are used

as inputs to an AND-gate multiply. Figure 9a shows the overall

ranking of the configurations using the true error, ZCE and SCC.

We see that ZCE is able to produce the same rank ordering as the

true error, while SCC produces a slightly different ranking. Using

Kendall’s 𝜏 coefficient [10] to measure the rank correlation between
SCC and true error, we get 0.82 out of a range of -1 (most dissimilar)

to 1 (most similar). Figure 9b shows similar results when evaluating

six possible designs (i.e. 21 configurations) for 8-bit LFSRs; SCC

yields a Kendall’s 𝜏 coefficient of 0.83.
2D Convolution: To evaluate ZCE’s ability to rank number gener-

ator designs at an application level, we compare the true error, ZCE

and SCC for the same 3×3 Gaussian blur benchmarkwith 6 different

grayscale input images used in Section 4.1. All the input pixels share

264

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Hsuan Hsiao, Joshua San Miguel, Yuko Hara-Azumi, and Jason Anderson

0.5

0.6

0.7

0.8

0.9

1.0

64 128 256 512 1024

Ke
nd

al
l's

 τ
co

ef
fic

ie
nt

bitstream length

SCC ZCE

Figure 10: Kendall’s 𝜏 coefficient of the rankings produced
by ZCE and SCC for a 3 × 3 Gaussian blur benchmark.

a random number generator, and all the weight values share a ran-

dom number generator. For each of the different bitstream lengths,

six different LFSR designs are considered, resulting in 21 LFSR-pair

configurations. For this experiment, the ranking produced by ZCE

does not 100% agree with the ranking based on true error. This

follows from our observation in Section 4.1, whereby using the

ZCE-recommended alignment may not necessarily produce the

lowest application error due to the effect of positive and negative

errors cancelling out in the actual computation. Figure 10 shows

the Kendall’s 𝜏 coefficient for ZCE and SCC when compared to

the ranking based on true error. Across different bitstream lengths,

ZCE consistently produces a ranking that is more similar to the

reference ranking than SCC.

Takeaway: Compared to SCC, evaluation of design choices using

ZCE yields higher similarity to evaluation based on functional unit

and application error. ZCE thus serves as a valuable metric for

pruning design spaces and comparing different implementations /

parameters of SC number generators.

5 RELATEDWORK

As described in Section 2.3, SCC [1] is a metric that evaluates the

cross-correlation between two SC bitstreams. SCC can be used to

identify if and to what degree two bitstreams are positively or neg-

atively correlated, whereas ZCE can be used to identify if and to

what degree two bitstreams are independent. Other than SCC, there

have been several tools in literature that address correlation. Proba-

blistic transfer matrices (PTM) is an algebraic framework designed

to help analyze correlation-induced errors in an SC circuit [1, 5].

With PTM, the user provides the probability of each input combi-

nation (e.g. 𝑃00, 𝑃01, 𝑃10, 𝑃11) in a row vector and performs matrix

multiplication with a matrix that describes the logic function of

the circuit. The resultant vector yields the expected value of the

circuit with the given input correlation. Automated synthesis of

number sequences used for random number generators has also

been proposed to produce optimal accuracy for SC circuits [11].

Here a mixed integer programming formulation is used to generate

number sequences to obtain maximum accuracy for a circuit. ZCE

is orthogonal to these works, serving as an evaluation metric as

opposed to a synthesis tool.

Another form of correlation for SC bitstreams is autocorrelation,

which refers to the correlation of a bitstream with a delayed version

of itself. SBoNG [13] is a random number generator designed to

have low autocorrelation and has been proposed to enable higher

potential for sharing among different bitstreams. SANG [4] is an

algorithm that generates bitstreams with prescribed autocorrelation

properties and has been proposed to help designers understand and

manage the effects of autocorrelation. Though these works focus

on number generation, ZCE instead provides a methodology for

measuring bitstream independence.

6 CONCLUSION

In this work, we introduce ZCE, an independence metric for finite-

length SC bitstreams. Through careful analysis of the existing SCC

metric, we highlight limitations in its ability to evaluate bitstream

independence and show how ZCE can overcome them. We then

present several use cases where ZCE can be a valuable tool in the

design cycle of SC systems. Compared to SCC, ZCE is able to pro-

vide better alignment recommendations for lower application error,

faster identification of bitstream independence, and more accurate

comparison between variants of random number generators when

choosing what to include in an SC system.

7 ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

helpful feedback, as well as Dr. Vincent T. Lee and Dr. Armin Alaghi

for their valuable discussions.

REFERENCES
[1] A. Alaghi and J. P. Hayes. 2013. Exploiting correlation in stochastic circuit design.

In IEEE 31st International Conference on Computer Design. 39–46.
[2] A. Alaghi and J. P. Hayes. 2013. Stochastic circuits for real-time image-processing

applications. In 50th ACM/EDAC/IEEE Design Automation Conference. 1–6.
[3] A. Ardakani et al. 2017. VLSI Implementation of Deep Neural Network Using

Integral Stochastic Computing. IEEE Transactions on Very Large Scale Integration
Systems 25, 10 (2017), 2688–2699.

[4] T. Baker and J. Hayes. 2019. Impact of Autocorrelation on Stochastic Circuit
Accuracy. In IEEE Computer Society Annual Symposium on VLSI. 271–277.

[5] T. Chen and J. P. Hayes. 2014. Analyzing and controlling accuracy in stochastic
circuits. In IEEE 32nd International Conference on Computer Design. 367–373.

[6] Q. T. Dong et al. 2010. Stochastic Decoding of Turbo Codes. IEEE Transactions
on Signal Processing 58, 12 (2010), 6421–6425.

[7] D. Fick et al. 2014. Mixed-signal stochastic computation demonstrated in an
image sensor with integrated 2D edge detection and noise filtering. In Proceedings
of the IEEE Custom Integrated Circuits Conference. 1–4.

[8] B. R. Gaines. 1967. Stochastic Computing. In Proceedings of the April 18-20, 1967,
Spring Joint Computer Conference. ACM, New York, NY, USA, 149–156.

[9] B. R. Gaines. 1969. Stochastic Computing Systems. Springer US, Boston, MA,
37–172.

[10] M. G. Kendall. 1938. A New Measure of Rank Correlation. Biometrika 30, 1/2
(1938), 81–93.

[11] V. T. Lee et al. 2019. Synthesizing Number Generators for Stochastic Computing
using Mixed Integer Programming. CoRR abs/1902.05971 (2019). arXiv:1902.05971

[12] P. Li and D. J. Lilja. 2011. Using stochastic computing to implement digital image
processing algorithms. In IEEE 29th International Conference on Computer Design.
154–161.

[13] F. Neugebauer, I. Polian, and J. P. Hayes. 2017. Building a Better Random Number
Generator for Stochastic Computing. In Euromicro Conference on Digital System
Design. 1–8.

[14] F. Neugebauer, I. Polian, and J. P. Hayes. 2017. Framework for quantifying and
managing accuracy in stochastic circuit design. In Design, Automation & Test in
Europe Conference & Exhibition. 1–6.

[15] A. Ren et al. 2017. SC-DCNN: Highly-Scalable Deep Convolutional Neural
Network Using Stochastic Computing. In Proceedings of the Twenty-Second In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems. Association for Computing Machinery, New York, NY, USA,
405–418.

[16] H. Sim and J. Lee. 2019. Log-Quantized Stochastic Computing for Memory and
Computation Efficient DNNs. In Proceedings of the 24th Asia and South Pacific
Design Automation Conference. Association for Computing Machinery, New York,
NY, USA, 280–285.

[17] S. S. Tehrani, W. J. Gross, and S. Mannor. 2006. Stochastic decoding of LDPC
codes. IEEE Communications Letters 10, 10 (2006), 716–718.

[18] J. von Neumann. 1956. Probabilistic logics and synthesis of reliable organisms
from unreliable components. In Automata Studies, C. Shannon and J. McCarthy
(Eds.). Princeton University Press, 43–98.

265

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

