
Streaming Accuracy: Characterizing Early Termination
in Stochastic Computing

Hsuan Hsiao
University of Toronto

julie.hsiao@mail.utoronto.ca

Joshua San Miguel
University of Wisconsin-Madison

jsanmiguel@wisc.edu

Jason Anderson
University of Toronto

janders@ece.utoronto.ca

Abstract—Stochastic computing has garnered interest in the
research community due to its ability to implement complicated
compute with very small area footprints, at the cost of some
accuracy and higher latency. With its unique tradeoffs between
area, accuracy and latency, one commonly used technique to
minimize area and latency is to early-terminate computation.
Given this, it is useful to be able to measure and characterize
how amenable a bitstream is to early termination. We present
Streaming Accuracy, a metric that measures how far a bitstream
is from its most early-terminable form. We show that it overcomes
limitations of prior studies, and we characterize the design space
for building stochastic circuits with early termination. We then
propose a new hardware bitstream generator that produces
bitstreams with optimal streaming accuracy.

I. INTRODUCTION

Stochastic computing (SC) [16], [7] is a reemerging com-
puting paradigm that performs computation on bit-serial unary
bitstreams as opposed to bit-parallel binary-encoded registers.
Values in SC are represented by the probability that a bit is set
in a bitstream (e.g. 0010 and 1000 both represent a value of 1

4
in the unipolar format). Because of its value encoding format
and its serial nature, SC is capable of performing computation
with extremely small functional units (e.g. multiplication is
reduced to a single AND gate). Its potential to have extremely
low power and area has inspired researchers in the community
to create efficient circuit implementations in various applica-
tions domains, including image processing [10], [1], [6], error-
correction code decoding [15], [5] and neural networks [12],
[13], [3].

While SC circuits can achieve low power and area, they
trade off latency to provide similar compute accuracy as their
traditional binary-encoded counterpart. SC circuits require
exponentially higher latency compared to their binary-encoded
counterparts. In order to bridge this performance gap, the
ability to early-terminate computation greatly enhances the
feasibility of SC circuits. With that in mind, the ability
to measure the error consequences of early termination is
invaluable for SC circuit designers.

Progressive precision [2] and normalized stability [19] are
two metrics in SC literature that can help designers with
quantifying early termination. While they each have their own
respective use cases where they excel, they are insufficient
if we want to know how well a bitstream is amenable to
early termination at arbitrary termination points. Progressive
precision evaluates a bitstream only at powers-of-2 termination
points, while normalized stability requires a user-defined error

threshold that is non-trivial to define. As we will show later in
Section III, these limitations make the existing metrics unable
to identify, among different bitstreams representing the same
value, which bitstream to use to achieve the highest accuracy
at arbitrary early termination points.

To aid in the ability to measure how close a bitstream is
to its most early-terminable form, we propose a new metric
called streaming accuracy. Any bitstream with a streaming
accuracy of 1 achieves the highest accuracy possible at any
arbitrary early termination point and thus represents the most
early-terminable form. Using streaming accuracy, designers
can characterize and analyze their SC circuit to see whether
a component hinders or enhances the circuit’s overall ability
to support early termination. Early termination-based opti-
mization and design space exploration can be carried out
and evaluated in a generalized manner (i.e. without prior
knowledge of any application-specific error tolerance value).
Alongside streaming accuracy, we also propose the design of a
hardware bitstream generator that always produces bitstreams
with streaming accuracy of 1, which we call the streaming-
accurate (SA) generator. We show later in Section V that using
our SA generator yields significantly less error compared to
popular Halton and LFSR-based generators when terminated
early.

The contributions of this paper are as follows:
• We propose streaming accuracy, a metric that evaluates

how close a bitstream is to its most early-terminable form.
• We present characterizations of how well different func-

tional units can retain streaming accuracy and how early
termination interacts with bitstream independence.

• We introduce the concept of a streaming-accurate bit-
stream, which achieves the lowest possible error at all
partial bitstream lengths, and propose a design for a
bitstream generator that generates streaming-accurate bit-
streams.

II. BACKGROUND AND RELATED WORK

This section gives an overview of existing metrics in liter-
ature that quantify aspects of early termination in SC, as well
as how SC bitstreams are typically generated in SC circuits.

A. Early Termination Metrics

Progressive Precision. Progressive precision (PP) [2] is a
property that enables a stochastic computation to trade off its
accuracy with speed. If the first l ≤ L bits of a length-L

0 5 10 15 20 25 30
Partial Bitstream Length (bits)

0.92

0.94

0.96

0.98

1.00
Ac

cu
ra

cy
Normalized Stability T=5%

0 5 10 15 20 25 30
Partial Bitstream Length (bits)

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Normalized Stability T=10%

0 5 10 15 20 25 30
Partial Bitstream Length (bits)

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Progressive Precision

0 5 10 15 20 25 30
Partial Bitstream Length (bits)

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Best

Fig. 1: Using normalized stability and progressive precision to select the best bitstream with a value of 1
32 to use for early

termination. Multiple bitstreams selected by the metric are plotted as different coloured lines.

computation provide a sufficiently good approximation of the
desired result, the computation can be stopped early. Applying
it to a bitstream X of length L, X is k-PP if the bit-error of
each initial partial bitstream Xl of length l = 2i is at most k
for all i. Bit-error is defined as l×|PXl

−P ∗X |, where PXl
is the

value represented by bitstream Xl, and P ∗X is the desired exact
value. For example, if X = 0111111111110000 and P ∗X = 10

16 ,
then the initial sub-sequences of length l = 2, 4, 8, and 16
are Xl = 01, 0111, 01111111, and 0111111111110000. The
bit-error for each of the partial bitstreams are 0.25, 0.5, 2, and
1 respectively, so X is 2-PP. Unlike our streaming accuracy
metric, progressive precision only evaluates the bitstream at
powers-of-2 partial bitstream lengths. Section III goes into
detail on the limitations and differences between the two.
Normalized Stability. Wu et al. [19] define a serial bit-
stream to be in the stable state when the fluctuation of
the bitstream value is below a user-defined error threshold.
Normalized stability is a metric that measures how long a
bitstream is in the stable state, within a target error threshold,
normalized to the maximum achievable stable duration. Its
value ranges from 0 to 1, where the closer the normalized
stability is to 1, the earlier the bitstream is able to reach the
stable state. For example, if the user-defined error threshold
is 10%, a bitstream representing the value 0.5 that looks
like X = 1010101010101010 is the most stable form and
becomes stable after 8 bits (i.e. terminating any time after
8 bits is guaranteed to be within 10% error); it achieves
the maximum stable duration of 8, and thus its normalized
stability is defined as 1. Comparatively, a bitstream that looks
like Y = 0000111100001111 has a normalized stability value
of 0.5 since it is only stable after 12 bits, having only half
of the stable duration of the most stable form. Unlike our
streaming accuracy metric, normalized stability requires a
user-defined error threshold to be useful, which can be non-
trivial to define. Section III provides more detailed explanation
on the limitations and differences between the two.

B. SC Bitstream Generator

In general, a length-L SC bitstream is generated by com-
paring the value of the desired number with random numbers
from a random number generator (RNG) source over L cycles;
if the random number is less than the desired number, a bit
of 1 is generated for that cycle. For a bitstream length of 8
and a desired value of 4

8 , one would set the RNG to output

random numbers between 0 and 7 and compare with 4. This
will statistically generate an output bitstream where 4 out of
8 bits are set to one. Typical RNGs used in state-of-the-art
circuits include linear-feedback shift registers (LFSRs) and
low-discrepency sequences such as Halton [2] and Sobol [11].

III. STREAMING ACCURACY

As discussed previously, early termination is a crucial part
of efficient stochastic computing; thus it is important for
hardware designers to be able to accurately measure and
characterize it. Progressive precision and normalized stability
are prior metrics that can be used for this purpose, however
they have some fundamental limitations.
Limitations of Prior Studies. Fig. 1 illustrates the results
obtained when using normalized stability and progressive
precision to select versions of bitstreams representing a value
of 1

32 that the metrics indicate are best for early termination.
For normalized stability, error thresholds T of 5% and 10% are
used (left-most two plots). In both cases, multiple bitstreams
of value 1

32 obtained the highest normalized stability value
of 1 (20 and 25 bitstreams for 5% and 10%, respectively),
and each version is plotted as a different coloured line. Com-
pared with the actual best bitstream shown on the far right,
normalized stability is unable to distinguish the best bitstream
from the sub-optimal ones, potentially costing accuracy when
terminating early. Similarly, for progressive precision (third
plot from the left), 24 different bitstreams were identified as
having the lowest k value of 0.5, each of them plotted as a
different coloured line. The best bitstream for early termination
is again indistinguishable from the sub-optimal ones when
only looking at the value produced by progressive precision.

The limitation of progressive precision is that it evaluates
only power-of-2 partial-bitstream lengths. As shown in Fig. 1,
all selected bitstreams have the same accuracy as the best
bitstream at power-of-2 partial bitstream lengths; however, no
accuracy guarantee is given for any other partial bitstream
lengths. On the other hand, normalized stability requires
a user-defined error threshold to be useful, which is non-
trivial to set unless the designer has sufficient application-
specific knowledge. Although normalized stability can provide
an estimate of which cycle it is safe to early terminate to
stay within the specified error threshold, this cycle number
quickly increases as the error threshold decreases. Note that
normalized stability does not work with an error threshold

2 4 6 8 10 12 14 16
Partial Bitstream Length (bits)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

|E
rro

r|

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 2: Example of early termination error for a bitstream
representing the value 5

16 . All possible |error| at each partial
bitstream length is shown in blue. A bitstream with |error|
that consists of all points marked by the red line is defined to
be a streaming-accurate bitstream.

of 0, some non-zero error tolerance amount must always be
specified. Overall, while these two metrics are good for their
particular use cases, they are insufficient in measuring early
termination in a more generalized manner.
Streaming Accuracy Definition. To be able to reason about
early termination in a more generalized manner, we desire
a metric that can reflect the accuracy of a bitstream at any
arbitrary early termination point. For a given length-L bit-
stream representing a value of PX , it can have L different early
termination values PXi (given i ≤ L), which each correspond
to the value represented by its initial partial bitstream value
up to the ith bit of the bitstream (e.g. # of 1s from bits 1 to i

i in
unipolar format). We look at the sum of all possible early-
termination errors:

∑L
i=1 |PXi

− PX |, and define its raw
streaming accuracy to be

Φ = 1−
∑L

i=1 |PXi
− PX |

L
(1)

Out of all different bitstreams representing the same value,
the best bitstream for early termination at arbitrary points will
have the highest raw streaming accuracy value.

Fig. 2 shows an example of all possible early-termination
error magnitudes at different early-termination points for all
bitstreams representing a value of 5

16 . Looking at this plot, we
observe that achieving the minimum early termination error at
each successive partial bitstream length (e.g. blue dots marked
by the red line) requires monotonically increasing the number
of 1s in its partial bitstream by at most 1. This trend holds for
all other bitstream values as well. From this analysis, we rec-
ognize that there always exists a bitstream that is optimal for
early termination at arbitrary points since a partial bitstream
of length i + 1 can be constructed from a partial bitstream
of length i. For the example in Fig. 2, the bitstream that is
optimal for early termination is 0100100100010010. Because
of this characteristic, minimizing the error introduced at each

additional bit will minimize the overall error. To construct
such a bitstream, one can simply take a greedy approach of
evaluating at each clock cycle whether introducing a 0 or a 1
will minimize the deviation from the full bitstream value (see
Section V for our proposed hardware design that implements
this). We call this bitstream the streaming-accurate bitstream
for that value, and it is guaranteed to be the optimal early-
terminable form with Φ = Φbest for that value. The streaming-
accurate bitstream achieves the lowest possible error at all
partial bitstream lengths (e.g. red line in Fig. 2).

To know how close a bitstream is from its optimal early-
terminable form, we normalize its Φ to the Φbest represented
by the streaming-accurate bitstream, and define streaming
accuracy (value-dependent form) to be

Streaming accuracyvalue−dependent =
Φ

Φbest
(2)

A streaming accuracy of 1 indicates that the bitstream is in
optimal early-terminable form, and the closer to 1 a bitstream’s
streaming accuracy is, the more amenable it is to be early-
terminated at an arbitrary point.

Since the formulation of streaming accuracy utilizes the
summation of early termination errors at different early-
termination points, the Φ and Φbest values are value-dependent
and this can make it difficult to use when trying to aggre-
gate streaming accuracy values across bitstreams representing
different values. We define a value-independent version of
streaming accuracy as

Streaming accuracyvalue−independent =
Φ− Φworst

Φbest − Φworst
(3)

Φworst refers to the Φ of the worst bitstream for terminat-
ing early at arbitrary points. In this value-independent form,
streaming accuracy is defined to be 1 when Φbest = Φworst.
For any bitstream representing a value < 0.5, the worst
bitstream will be the one where all 1s are clumped at the
beginning of the bitstream. Conversely, for any bitstream
representing a value > 0.5, the worst will be the one where
all 1s are clumped at the end of the bitstream. In this form,
a streaming accuracy of 0 presents the least early-terminable
form, and a streaming accuracy of 1 still represents the most
early-terminable form. Any value in between indicates the
early-termination characteristic of the bitstream relative to the
best and the worst.
Evaluation. To see how streaming accuracy compares with
progressive precision and normalized stability, we perform an
experiment where we use each metric to select bitstreams
deemed to be the best for early-termination and plot the
accuracy afforded by their selection in Fig. 3. For each value
representable with a bitstream length of 32, we sample up to
10k different bitstreams representing that value (some values
have less than 10k different forms) and use each of the metrics
to select the bitstream deemed best for early-termination. The
accuracy of the selected bitstream at each partial bitstream
length is calculated as 1− |PX − PSi |, where PX represents
the value of the full bitstream, and PSi represents the value of

0 5 10 15 20 25 30
Partial Bitstream Length (bits)

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ac

cu
ra

cy

Streaming Accuracy
Normalized Stability T=5%
Normalized Stability T=10%
Progressive Precision

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Average accuracy of using partial bitstreams selected
by different metrics: normalized stability, progressive precision
and streaming accuracy (value-dependent).

TABLE I: Streaming accuracy retention (value-independent)
of functional units.

Op Functional Unit SAout/SAin

× AND [8] 1.011
× uMUL-ST [17] 1.044
× uMUL-IS [17] 0.992
+ MUX with TFF select [8] 1.002
+ MUX with LFSR select [8] 1.000
+ uSADD [17] 1.050
÷ CORDIV [4] 0.885
÷ ISCBDIV [18] 0.979

the selected bitstream at partial bitstream length i. If a metric
indicates multiple bitstreams to be selected as the best, the
accuracy value at each partial bitstream length is averaged
across all selected bitstreams. Finally the accuracy for each
value is averaged across all representable values to produce
the curve in Fig. 3.

From this plot, we can see that bitstreams selected us-
ing streaming accuracy consistently produce higher accuracy
across different early termination points. Bitstreams selected
by progressive precision obtain high accuracy at power-of-
2 early-termination points but have lower accuracy at other
points. Bitstreams selected by normalized stability have lower
accuracy at earlier termination points and only really attain
higher accuracy when terminating later (e.g. when the bit-
stream is considered stable). Another interesting observation
with normalized stability is that the accuracy value for termi-
nating earlier (before cycle 13) using T = 10% is actually
higher than using T = 5%, which is contrary to what one
would expect. This further shows the limitations of normalized
stability if we want to use it to measure the consequences of
early termination at any arbitrary point.

IV. CHARACTERIZING EARLY TERMINATION

Streaming accuracy can be valuable in characterizing SC
circuits. In this section, we present two characterizations:
the first evaluates various functional units proposed in the
literature, and the second illustrates the relationship between
streaming accuracy and bitstream independence.

0.2 0.1 0.0 0.1 0.2
ZCE(X,Y)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

St
re

am
in

g
Ac

cu
ra

cy
 o

f Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4: Streaming accuracy (value-dependent) of different
values when X is optimal streaming accuracy.

A. Streaming Accuracy Retention

When optimizing an SC circuit for early termination, it is
useful for the designer to know whether passing bitstreams
through different components will increase, decrease, or re-
tain the streaming accuracy at the output. We perform this
analysis on several arithmetic functional units proposed in the
literature, assuming bitstream lengths of 64. For each func-
tional unit, we measure both the input and output streaming
accuracy and show the ratio between them in Table I. The
inputs to this experiment consist of 100K random samples
of bitstreams over all possible (X,Y) value combinations. The
input streaming accuracy is computed as the average across all
X and Y bitstreams used. Across different implementations of
multiplication and scaled addition, we see that they generally
retain and can even slightly improve the streaming accuracy of
the bitstreams. On the other hand, both implementations of the
divider yield a decrease in streaming accuracy of bitstreams
passing through them, since they need to reorder bits in
order to perform the division accurately. This characterization
motivates further design space exploration of SC functional
units that can achieve higher retention of streaming accuracy.

B. Relation to Bitstream Independence

Bitstream independence is often an important property for
SC computations. Given two bitstreams X and Y, they are
said to be independent if the output bitstream of an AND
gate (PX∧Y) equals the product of the two input bitstreams
(PXPY). As shown in prior work, some functional units
(e.g. multiplication with an AND gate) suffer in accuracy when
input bitstreams are not independent. Thus it is important to
optimize SC circuits not just for streaming accuracy but also
for bitstream independence. However, their relationship has
not been well studied, and it is not necessarily clear whether
or not these two properties are orthogonal.

We conduct experiments to characterize the relationship be-
tween streaming accuracy and bitstream independence; results
are shown in Figure 4. We measure bitstream independence
using ZCE [9]; a ZCE value closer to 0 implies higher inde-
pendence between the bitstreams. We first set one bitstream

n-bit adder
a b

k

overflow sum

reset_val = L / 2

X[i]

Fig. 5: Hardware for a bitstream generator that produces SA
bitstream.

TABLE II: Area for generators producing bitstreams of L=64.

Generator Area (µm2) Power (uW)
LFSR 75.278 26.851

Halton (base 2) 69.16 39.73
Halton (base 3) 245.252 140.796

Sobol 208.81 75.546
SA 69.16 31.306

X to be the streaming-accurate version of all possible values
representable with a bitstream length of 16. For each bitstream
X, we iterate through all possible values of another bitstream
Y and look at all possible bitstreams for each given value of
Y and plot the streaming accuracy of the Y bitstream against
ZCE(X,Y). Each (X,Y) value pair shows up as a single line
in the figure. As shown in the figure, streaming accuracy and
bitstream independence are not orthogonal. The more inde-
pendent two bitstreams are, the lower their streaming accuracy
are in general. From closer analysis, we find that the reason
is because forcing two bitstreams to each have high streaming
accuracy reduces the number of possible alignments of 1s and
0s that they can have. This in turn leads to more similarity
between the two bitstreams and thus higher likelihood that
they will not be independent. This characterization motivates
further research in the design of SC circuits that are jointly
optimized for streaming accuracy and bitstream independence.

V. STREAMING-ACCURATE BITSTREAM GENERATOR

As mentioned in Section III, for a given bitstream length
and value, we find that there exists a streaming-accurate (SA)
bitstream that is most amenable to early termination. The SA
bitstream has a particular form where the location of 0s and 1s
are organized to be as evenly distributed as possible (e.g. the
SA bitstream for 3

7 = 0.43 is 0101010 and 4
7 = 0.57 is

1010101). For bitstream lengths that are even numbers, there
can exist more than one bitstream that qualifies as the SA
bitstream (e.g. 01000010 and 00100010 are both SA bitstreams
for 2

8). In this section, we present the hardware design of a
SA bitstream generator that always produces SA bitstreams,
making it an ideal candidate for SC systems that support early
termination.

Fig. 5 shows our proposed design of the SA bitstream
generator. It is essentially an n-bit adder with preset capability,
where n = log2L. For a length-L bitstream, if the value we

0 10 20 30 40 50 60
Partial Bitstream Length (bits)

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

uMUL with LFSR gen
uMUL with Halton gen
uMUL with Sobol gen
uMUL with SA gen

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6: Accuracy of uMUL using different generators.

want to generate is k
L , we set the adder’s initial sum to L

2 and
add k every cycle. At every cycle i, if the adder overflows, the
new bit generated X[i] will be a 1, otherwise it will be a 0.
Note that the design shown in Fig. 5 is specific to power-of-2
bitstream lengths, which are most common in SC systems. To
handle bitstream lengths of L 6= 2n, we simply use an adder of
size n = ceil(log2L). Instead of simply checking the counter
overflow, we emulate an arbitrary value overflow by adding
a comparator to check sum ≥ L and outputting 1 when it is
true, 0 otherwise. Every time the sum “overflows,” we subtract
L from the sum so the adder can keep accumulating.

A. Area and Power Evaluation

To evaluate the area and power of our SA bitstream gener-
ator, we implement it in Verilog RTL and synthesize to netlist
using the area optimization options in Synopsys Design Com-
piler with the open-sourced NanGate FreePDK45 standard-
cell library [14]. To compare against popular SC bitstream
generators in literature, we implement a LFSR-based bitstream
generator, two versions of the Halton-based generator and
a Sobol-based generator from [17] and synthesize using the
same design flow. Table II shows the area and power (at
500MHz) results for each of these SC bitstream generators
when set to produce bitstreams of length 64. Our SA bitstream
generator has area cost close to the other generators based on
LFSR and base-2 Halton, which are among the lower area
costs of existing generators. The bitstream generator using
base-3 Halton sequences incurs significantly higher area cost
due to the increasing cost of the binary-coded base-b counter
that it requires as b increases.

B. Accuracy Evaluation

We evaluate the accuracy impact of using our SA generator
vs. using the LFSR, base-2 Halton and Sobol generators at
both the functional unit level and application level.
Functional Unit Evaluation. At the functional unit level, we
show the accuracy of a state-of-the-art correlation-insensitive
multiplier unit (uMUL-ST [17]) when the internal generator
(i.e. used to generate Seff

in,1 for the conditional probability
calculation [17]) is set as either the LFSR, Halton, Sobol or SA

0 10 20 30 40 50 60
Partial Bitstream Length (bits)

0

50

100

150

200

250

300

350

400
RM

SE
 (p

ixe
l v

al
ue

)
conv with LFSR gen
conv with Halton gen
conv with Sobol gen
conv with SA gen

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7: RMSE of 2D convolution across 6 different images.

generator. Fig. 6 shows the accuracy of the multiplication at
different early-termination points. The accuracy values plotted
represent the average accuracy results from multiplying 10k
random samples of (X,Y) input value pairs. Across all early
termination points, the uMUL-ST unit using an LFSR-based
generator achieves the lowest accuracy out of the four designs,
while the uMUL-ST unit using our SA generator achieves
the highest accuracy. Not only does the uMUL-ST unit using
the SA generator show faster convergence to a high accuracy
result, it also produces higher final accuracy on average even
without terminating early.
Application Evaluation. At the application level, we show the
accuracy of a 2D convolution SC system. For this experiment,
our SC system takes 6 different 256 × 256 grayscale images
and convolves each with a 3 × 3 weight filter that represents
a Gaussian blur. All multiplications are implemented with
uMUL-ST, and their products are accumulated in a parallel
adder to sum up the result of nine products for each output
pixel. The root-mean-square error (RMSE) with respect to a
baseline computation using traditional floating-point numbers
is computed at each early termination point, and the geomean
across all six images for each of the different generators are
shown in Fig. 7. Across all early termination points, the imple-
mentation using our SA generator achieves the lowest RMSE,
while the implementation using the LFSR-based generator has
the highest RMSE. This demonstrates the practical advantage
of our SA bitstream generator for enabling efficient early
termination in SC systems.

VI. CONCLUSION

In this work, we introduce streaming accuracy, a new metric
that measures how close a bitstream resembles its streaming-
accurate form. We show that it overcomes limitations of prior
metrics that make them difficult to use when considering early
termination in a generalized manner, at arbitrary termination
points. We also introduce the design of a new SC bitstream
generator that is guaranteed to produce bitstreams in their
streaming-accurate form, and show that it improves accuracy
of SC circuits compared with using an LFSR-based genera-
tor or a Halton-based generator. With SC’s unique tradeoffs
between area, accuracy and latency, this enhanced ability to

reason about early termination can be valuable for designers
to better optimize their SC systems and explore the complex
design space.

REFERENCES

[1] A. Alaghi and J. P. Hayes, “Stochastic circuits for real-time image-
processing applications,” in 2013 50th ACM/EDAC/IEEE Design Au-
tomation Conference (DAC), May 2013, pp. 1–6.

[2] A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochas-
tic circuits,” in 2014 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2014, pp. 1–4.

[3] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“Vlsi implementation of deep neural network using integral stochastic
computing,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 25, no. 10, pp. 2688–2699, 2017.

[4] T. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), July 2016, pp. 116–121.

[5] Q. T. Dong, M. Arzel, C. Jego, and W. J. Gross, “Stochastic decoding of
turbo codes,” IEEE Transactions on Signal Processing, vol. 58, no. 12,
pp. 6421–6425, 2010.

[6] D. Fick, G. Kim, A. Wang, D. Blaauw, and D. Sylvester, “Mixed-signal
stochastic computation demonstrated in an image sensor with integrated
2d edge detection and noise filtering,” in Proceedings of the IEEE 2014
Custom Integrated Circuits Conference, Sep. 2014, pp. 1–4.

[7] B. R. Gaines, “Stochastic computing,” in Proceedings of the April
18-20, 1967, Spring Joint Computer Conference, ser. AFIPS ’67
(Spring). New York, NY, USA: ACM, 1967, pp. 149–156. [Online].
Available: http://doi.acm.org/10.1145/1465482.1465505

[8] B. R. Gaines, Stochastic Computing Systems. Boston, MA: Springer
US, 1969, pp. 37–172.

[9] H. Hsiao, J. San Miguel, Y. Hara-Azumi, and J. Anderson, “Zero
correlation error: A metric for finite-length bitstream independence in
stochastic computing,” in Proceedings of the 26th Asia and South
Pacific Design Automation Conference, ser. ASPDAC ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 260–265.
[Online]. Available: https://doi.org/10.1145/3394885.3431552

[10] P. Li and D. J. Lilja, “Using stochastic computing to implement
digital image processing algorithms,” in 2011 IEEE 29th International
Conference on Computer Design (ICCD), Oct 2011, pp. 154–161.

[11] S. Liu and J. Han, “Energy efficient stochastic computing with sobol
sequences,” in Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, 2017, pp. 650–653.

[12] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and
B. Yuan, “Sc-dcnn: Highly-scalable deep convolutional neural network
using stochastic computing,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. New York, NY, USA: Association
for Computing Machinery, 2017, p. 405–418.

[13] H. Sim and J. Lee, “Log-quantized stochastic computing for memory
and computation efficient dnns,” in Proceedings of the 24th Asia and
South Pacific Design Automation Conference. New York, NY, USA:
Association for Computing Machinery, 2019, p. 280–285.

[14] J. E. Stine et al., “FreePDK: An open-source variation-aware design
kit,” in IEEE MSE, 2007, pp. 137–174.

[15] S. S. Tehrani, W. J. Gross, and S. Mannor, “Stochastic decoding of ldpc
codes,” IEEE Communications Letters, vol. 10, no. 10, pp. 716–718,
2006.

[16] J. von Neumann, “Probabilistic logics and synthesis of reliable organ-
isms from unreliable components,” in Automata Studies, C. Shannon and
J. McCarthy, Eds. Princeton University Press, 1956, pp. 43–98.

[17] D. Wu, J. Li, R. Yin, H. Hsiao, Y. Kim, and J. San Miguel, “uGEMM:
Unary Computing Architecture for GEMM Applications,” in Proceed-
ings of the 46th International Symposium on Computer Architecture,
2020.

[18] D. Wu and J. San Miguel, “In-stream stochastic division and square root
via correlation,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC), 2019, pp. 1–6.

[19] D. Wu, R. Yin, and J. San Miguel, Normalized Stability: A Cross-Level
Design Metric for Early Termination in Stochastic Computing. New
York, NY, USA: Association for Computing Machinery, 2021, p.
254–259. [Online]. Available: https://doi.org/10.1145/3394885.3431549

